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Abstract 

 

A volatility model must be able to capture the dynamics of volatility accurately. It 

should perform well in both estimation and forecasting volatility. The literature has 

yet to agree on the source of difference amongst various volatility models. Therefore, 

this research seeks the drivers of the superiority of the selected GARCH-family in 

modelling the volatility of the FTSE 100 index over 2000-2020. It considers if there 

are models that systematically outperform and if so, which conditions make those 

models superior over the other ones. An iterative process of identification, estimation 

and diagnostic tests of Box-Jenkins has been employed in conducting the statistical 

tests under different scenarios. A wide range of evaluation criteria including the value 

of log-likelihood, three types of information criteria, Mincer–Zarnowitz series, and 

different loss functions are employed in terms of both in-sample and out-of-sample 

performance evaluation. It is revealed that, firstly, the volatility of the UK’s stock 

market is clustering, sensitive to shocks, and persistent with a half-life of 14.5 weeks, 

still mean-reverting at some point albeit. Secondly, the condition of the market alters 

the performance of the models, improving after excluding the crisis time from the time 

series. Additionally, negative innovations have more impact on the volatility compared 

to the positive shocks so within the GARCH framework, asymmetric models better fit 

the volatility of the UK market. Moreover, the E-GARCH is the best fitting model 

among the selected models and its good in-sample performance may translate into a 

good out-of-sample performance as well. Finally, the implied volatility index of the 

FTSE 100 (VIX) has incremental information over the GARCH specification. As an 

output of the research, the inclusion of both asymmetry terms and exogenous variables 

of VIX into the GARCH-family models are suggested as significant sources of 

improvement in the quality of a stationary GARCH process. However, employing a 

different distribution function of t-student is not a meaningful source of difference 

contrary to what several studies suggest.  
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Chapter 1. Introduction 

 

1.1. Background 

 

Volatility, described as a degree of dispersion of random variables and traditionally 

measured by the standard deviation of expected returns, is a significant subject in 

financial and economic studies. It indicates the uncertainty of markets and economies 

and influences the decision-making process of entities and individuals (Bhowmik and 

Wang 2020). Stock market volatility affects the real economy through several 

mechanisms. Any changes in stock market variance influence the investors’ behaviour 

in terms of holding risky assets. The stability of financial markets also impacts the 

stability of the economy so that volatility is a concern for policymakers and 

governments (Arnold 2012; Pilbeam 2018). Volatility also has significant implications 

for financial market participants and finance professionals. A Forward-looking 

estimation of stock market returns’ fluctuations is a key input for asset pricing models 

e.g., the option pricing model of Black-Scholes-Merton and its extensions, risk 

management and hedging strategies e.g., Value-at-Risk models, portfolio construction 

decisions, investment valuation, and trading strategies (Hull 2012; Bhowmik and 

Wang 2020). 

Although a variety of tools and techniques have been introduced so far for 

modelling and forecasting volatility, the complexities inherent in the process make it 

significantly challenging. Different models have exhibited various qualities of 

performance depending on the markets’ situation. To specify volatility estimation 

models accurately, it is necessary to consider the certain properties and patterns of 

financial time series so-called stylized facts about financial data. Some important 

stylized facts about volatility are that volatility exhibits heteroscedasticity, clustering 

and persistence, leptokurtosis, and asymmetric behaviour. Additionally, innovations 

have an asymmetric impact on volatility (Engle and Patton 2007; Satchell and Knight 

2011; Hussain et al. 2019). 

Traditional models assume constant volatility. One of the key assumptions in 

classic regression models is that the variance of error terms is constant over time, 

known as homoscedasticity. The reality in financial time series is that the residuals are 

heteroscedastic, and volatility has a time-varying and latent nature (Sharma 2015). 
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To model time-varying conditional variance and deal with heteroscedasticity, Engle 

(1982) introduces a stochastic process called autoregressive conditional 

heteroscedasticity (ARCH) to overcome the implausibility of the assumption for 

forecasting in traditional models that implied there was a one-period, unconditional, 

constant variance. In his work, mean and variances of inflation in the UK are estimated 

and the study shows that the ARCH effect is significant among disturbances and the 

estimated variance appears to increase during the volatile period of the 1970s. The 

study uses past disturbances to model the variance using an ARCH model. The ARCH 

effectively models the heteroscedasticity by defining the conditional variance of the 

residuals as a linear function of the squared residuals in the previous period (Sharma 

2015). Engle (1982) also indicates that the ARCH models provide a better estimate 

when the Maximum Likelihood (ML) method is used instead of the Ordinary Least 

Square (OLS) method (Obeng 2016). 

The ARCH model required many parameters to be estimated. Furthermore, 

(Bollerslev 1986) generalizes and extends the ARCH to the GARCH effectively by 

extension of the Autoregressive (AR) process to an Autoregressive Moving Average 

(ARMA) process and benefits from its better performance in forecasting the 

uncertainty of inflation rates. The GARCH defines the conditional variance as a 

function of its lagged values and squared lagged values of residuals (Sharma 2015; 

Brooks 2019). Both the ARCH and the GARCH meet the stylized facts however the 

latter needs a lower number of estimated parameters and therefore is more 

parsimonious (Damodar N 2004; Sharma 2015). 

Another stylized fact that has appropriately been addressed by the standard GARCH 

models is that financial time series face volatility clustering and leptokurtosis (see 

Mandelbrot (1997) as one of the earliest works). It implies that large movements in 

stock volatility are followed by subsequent large changes, and small movements are 

observed to be followed by small movements in either sign.  

Another empirically-proved characteristic is that not only financial markets’ returns 

are negatively skewed and follow fat-tail distributions, but also their volatility does 

not respond to negative and positive shocks symmetrically (see Black (1976) for one 

of the earliest works and). This phenomenon is sometimes called the leverage effect 

and sometimes risk premium effect (Engle and Patton 2007; Brooks 2019). However, 

this asymmetry has not been considered in the standard ARCH and GARCH models 
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because these models in nature only deal with the magnitudes of the shocks not the 

positivity or negativity of the shocks. 

A response to the failure of standard GARCH models in accounting for asymmetry 

is the development of different extensions and variants of GARCH. These models have 

been evolved to address different aspects of the complexity of volatility estimation and 

prediction (Brooks 2019). Some of the variants include the Exponential-GARCH 

(EGARCH) model by Nelson (1991), the Glosten, Jaganathan, and Runkle model 

(GJR-GARCH) modelled by Glosten et al. (1993), the Asymmetric Power ARCH 

(APARCH) model by Ding et al. (1993), Threshold ARCH (TARCH), and the 

Threshold GARCH introduced independently by Zakoian (1994), and the Power 

ARCH model generalised by Ding et al. (1993) (Granger and Poon 2001; Alberg et al. 

2008; Sharma 2015; Obeng 2016; Wang et al. 2020). 

A valid question here is that what makes these different models more appropriate 

and accurate in modelling and forecasting volatility. A growing body of literature 

seeks to compare, contrast, and evaluate the accuracy of these various models. The 

conclusions imply that selecting the most suitable GARCH-type model to address the 

market volatility is a challenging task, conditional heteroscedasticity models are 

among the best available models, and the performance of models is significantly 

different for various asset classes and different markets (Brooks 2019). However, 

relatively less work has been done around the possible sources of difference among 

various models (Chkili et al. 2014; Brooks 2019; Dixit and Agrawal 2019). 

 

1.2. Research Aim 

 

This research aims to evaluate the performance of selected GARCH-type models in 

estimation and forecasting weekly volatility of the UK stock market during 2000-2020 

and ultimately provide recommendations for the models’ improvement.   

The FTSE-100 is selected as a proxy for the UK market and the study tries to see if 

there are models that systematically outperform the other ones and if so, which 

conditions make some models superior over the other ones. The output of the research 

is recommendations around what makes a volatility estimation model a good model 

for both estimation and forecasting purposes. 
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1.3. Research Objectives 

 

Following the aim of the research, the objectives of the research are as follows. 

1. To evaluate the ability of standard GARCH, Exponential GARCH, and the GJR-

GARCH in modelling and forecasting the weekly volatility of FTSE-100. 

2. To find if non-linear GARCH models can systematically outperform the standard 

GARCH model and if so, what is the best-fitting model among two variants of the 

non-linear GARCH models. 

3. To compare the accuracy of models in the normal course of the economy with the 

crisis periods and examine if distressed markets’ characteristics alter the 

performance of models. 

4. To explore possible sources of improvements in models to make recommendations 

that benefit both future empirical works and stock market professionals. 

This study contributes to the existing literature by more thoroughly examining the 

sources of difference among GARCH-type models driving the forecast superiority and 

presents recommendations to improve the models. Additionally, it tries to examine the 

impact of market conditions on the forecasting performance of GARCH models and 

since it is solely focused on the UK stock index (FTSE 100), provides an insight into 

that specific market. Furthermore, it covers a relatively long time among the volatility 

forecasting studies. This study also uses a wide range of performance evaluation 

criteria compared to some earlier studies. This study could be beneficial for both 

researchers and market participants. 

 

The remainder of this research is organised as follows:  In Chapter 2, a literature 

review is presented. Chapter 3 describes the research methodology and data. In 

Chapter 4, findings and empirical results are presented and discussed, and finally, 

Chapter 5 presents the conclusion, recommendations for improvement of the models, 

limitations of the research, and the horizon for future studies. 
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Chapter 2. Literature Review 

 

Finance and investment literature categorises volatility and risk modelling into 

different types of models: the Autoregressive Moving Average (ARMA) models, the 

Stochastic Volatility (SV) models, the Regime-switching models, The Threshold 

models, and the Autoregressive Conditional Heteroscedasticity (ARCH) models 

(Brooks 2019). Considering the aim and objectives of this research, this chapter 

concentrates on the last category namely ARCH and its generalised type called 

GARCH models. The focus in this literature review is on volatility in financial markets 

with a special emphasis on forecasting. The first section of this chapter reviews the 

evolutionary process and development of ARCH models in response to the specific 

characteristics of financial markets (stylised facts) and then briefly points to the studies 

testing the stylised facts of financial markets using the ARCH and GARCH family 

models. The importance of testing the stylised facts of financial data is that firstly, 

autoregressive conditional heteroscedasticity models have been developed in an 

attempt to account for different stylized facts (Bhowmik and Wang 2020), and 

secondly and more importantly, this research seeks the drivers of the superior ability 

of models in forecasting volatility and a prerequisite for a model to have an explanatory 

and predictive power is that the model fits the basic characteristics of the specific 

market being examined.  

The second section of the literature review critically compares the ability of 

GARCH-type models in modelling and forecasting volatility. This section itself is 

divided into two sub-sections. The first one presents evidence in favour of more 

developed and sophisticated models as those are expected to be superior based on their 

complexity and novelty, and the second sub-section critically evaluates if the 

complexity added to the models improves their performance proportionally. 

Interestingly, several studies show the opposite of this intuition. 

The last section of this chapter reviews the studies seeking a response to the 

question “what makes a GARCH model a good system in terms of volatility modelling 

and forecasting?”. Few studies have been done in this area and those limited factors 

mentioned as drivers of the superiority of models, most of the time are by-products of 

the studies evaluating the performance of the models. The results are mixed and 

inconclusive and there is not any consensus in response to this critical question. 

Considering this fact, this research tries to present some recommendations to improve 
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the ability of GARCH models in estimation and forecasting volatility of the UK stock 

market. 

 

2.1. Evolutionary Process of Autoregressive Conditional Heteroscedasticity 

Models  

 

After being introduced by Engle (1982), and being extended and generalised by 

Bollerslev (1986), the time-varying volatility estimation and forecasting have been 

conducted for different asset classes and data sets ranging from inflation, interest rates, 

and exchange rates to stock market indices and cryptocurrencies (Engle 1982; 

Bollerslev 1986; Chu et al. 2017; Costa 2017). One of the main reasons for the 

popularity of these models is that many empirical studies confirm their ability to 

capture the dynamics of conditional variance. In one of the earliest works in this field, 

the accuracy of GARCH models in comparison with the previous systems has been 

proved by Akgiray (1989) (SEKMEN and Ravanoğlu 2020). It is also confirmed that 

the out-of-sample forecasting performance of GARCH models for a one-week horizon 

is more accurate compared to the previous methods using five exchange rates against 

the dollar during 1973-1989 (West and Cho 1995; Bhowmik and Wang 2020).  

The good performance of GARCH models is attributable to their ability in capturing 

the common characteristics of volatility. It is empirically confirmed that volatility is 

clustered, persistent, and conditional, and the GARCH models are proved to provide a 

good first approximation to the volatility clustering, volatility persistence, nonlinearity 

and observed temporal dependencies (Engle and Bollerslev 1986; McCurdy and 

Morgan 1988; Baillie and Bollerslev 1989; Hsieh 1989; Andersen and Bollerslev 

1998; Joshi 2010; Li and Wang 2013; Francq and Zakoian 2019; Bhowmik and Wang 

2020). 

There is also obvious evidence of asymmetry and leverage effect in financial 

markets meaning that negative shocks increase the volatility more than positive 

shocks. In a recent study, Aliyev et al. (2020) employ GARCH, EGARCH and GJR-

GARCH to estimate the volatility of Nasdaq-100 using daily data over 2000-2019. The 

result of the study suggests the persistency of volatility shocks and the presence of 

asymmetry and leverage effect. 

In addition to the US market, the leverage effect has been confirmed in several 

regions. Amongst many other studies, Olowe (2009) confirms that volatility is 



 

7 
 

persistent and there is a leverage effect in the Nigerian stock market. Chang et al. 

(2011) confirm the asymmetry of the volatility of the Taiwanese financial markets. 

Abdalla and Suliman (2012) confirm it in the Saudi stock market. Hou (2013) indicates 

the asymmetric effect of negative news in Chinese stock markets. Okicic (2014) shows 

the existence of the leverage effect in Central and Eastern European stock markets. 

Banumathy and Azhagaiah (2015) capture the asymmetry of the Indian stock market 

during 10 years of 2003-2012 using daily closing prices of the Indian market index 

(Olowe 2009; Chang et al. 2011; Abdalla and Suliman 2012; Hou 2013; Okicic 2014; 

Banumathy and Azhagaiah 2015; Bhowmik and Wang 2020).  

Although Both the ARCH and GARCH models capture leptokurtosis and volatility 

clustering, they fail to model the leverage effect because their model specification is 

symmetric (Alberg et al. 2008; Francq and Zakoian 2019). 

Since standard GARCH methods were not able to address the leverage effect, 

forecasting conditional variance using non-linear and asymmetric GARCH models has 

been conducted in several papers. According to Fan et al. (2003); Tsay (2005); Sharma 

(2015); and Bhowmik and Wang (2020), the asymmetric effect of the negative return 

shocks is captured by various models. To incorporate the asymmetries, the 

Exponential-GARCH (EGARCH) introduced by Nelson (1991) models the logarithm 

of the volatility rather than its level. The GJR model (Glosten et al. 1993) incorporates 

an extra variable to adjust the model upward for the volatility of negative shocks. The 

Threshold (TGARCH) model introduced by Zakoian (1994) also tries to capture 

different effects of good news and bad news on volatility. The N-GARCH model 

(Higgins and Bera 1992), the APARCH model (Ding et al. 1993), and the HGARCH 

model (Hentschel 1995) are also used to handle asymmetries.  

Many other extensions and variants have been evolved to better capture the 

volatility structure and dynamics of the financial markets. Granger and Poon (2001) in 

a comprehensive literature review compare the findings of 72 written works in 

forecasting volatility using different techniques. They address problematic areas of 

forecasting, the influences of the frequency of data used, the measures selected as 

proxies for actual volatility, and the effects of crises and adverse events. 

In another systematic review recently Bhowmik and Wang (2020) review papers 

written from 2008 to 2019 using GARCH models to model market volatility and 

return. They conclude that the GARCH models provide better results combined with 

other techniques. Based on their study, under symmetric information, volatility can be 
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better explained by GARCH (1,1) and the asymmetric GARCH models could model 

the volatility more precisely under asymmetric information conditions. 

Considering the evolutionary process of the GARCH models in response to the 

stylised facts about volatility, the current dissertation firstly examines the stylised facts 

on the selected time-series which is the UK’s FTSE 100 index over 2000-2020 to see 

if the GARCH models are generally suitable to model the volatility of the UK stock 

market. In the next step, the study compares the performance of a simple GARCH with 

two more sophisticated asymmetric selected models namely the Exponential-GARCH 

and the GJR-GARCH to find the best-fitting model among the three. This comparison 

has been extensively done in the literature. The next sections review some of the 

marked works in this area.  

 

2.2. Complexity or Parsimonious; Asymmetric GARCH Versus Classic GARCH 

  

A critical discussion has emerged in the literature in terms of questioning the 

addition of more complexity and dimension into the volatility models. The question is 

whether the sophisticated models adding more parameters, perform superior in 

comparison with simpler and more parsimonious models or not. 

The literature seeks to compare and evaluate the accuracy and predictive power of 

these various models.  Several studies have been conducted to evaluate the forecasting 

performance of GARCH-type models in terms of their in-sample and out-of-sample 

forecasting accuracy. Hansen and Lunde (2005) compare 330 ARCH and GARCH-

type models to evaluate their ability in forecasting the one-day-ahead conditional 

variance. Using exchange rate data and stock market return data, the models are 

evaluated in terms of out-of-sample performance. The criteria for evaluating models’ 

performance are six different loss functions. In the analysis of exchange rates, they 

find no evidence that sophisticated and asymmetric models outperform GARCH. 

However, in terms of stock market data, the GARCH underperforms models that 

consider the leverage effect. This is a finding in support of the idea that different 

markets show different volatility dynamics and best-fitting models could be chosen 

firstly considering market type and condition (Granger and Poon 2001; Hansen and 

Lunde 2005; Bhowmik and Wang 2020). 
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The remainder of this section differentiates findings in favour of Asymmetric 

GARCH from the findings in favour of Classic GARCH models. 

 

2.2.1. Findings in Favour of Asymmetric GARCH models 

 

It is intuitive that since financial markets show leverage effect and asymmetry, 

asymmetric models better capture and model volatility. The superiority of exponential 

GARCH has been confirmed in several studies. The E-GARCH outperforms the 

simple GARCH for volatility forecasts of the US stock stocks (Pagan and Schwert 

1990; Hansen and Lunde 2005; Sharma 2015; Lin 2018). 

The quadratic GARCH (Q-GARCH) outperforms during the crash of 1987. The Q-

GARCH is expected to be able to handle the asymmetric effects of positive and 

negative shocks. Franses and Van Dijk (1996) evaluate the performance of GARCH 

and its two variants including Quadratic-GARCH and GJR-GARCH in forecasting the 

weekly volatility of stock markets in Germany, The Netherlands, Spain, Italy, and 

Sweden in 9 years. Their study shows that the Q-GARCH outperforms when there are 

extreme observations, such as the crash of 1987. The criteria used for performance 

evaluation in this study are the median of squared error as the loss criterion, and it is 

concluded that the Q-GARCH and GARCH models provide better out-of-sample 

forecasts than the GJR model (Franses and Van Dijk 1996; Granger and Poon 2001; 

Sharma 2015). 

Using monthly time series in Australia, asymmetric GJR-GARCH is superior. The 

study compares a wide range of models including a random walk model, a historical 

mean model, a moving average model. The evaluation criteria are the root mean 

squared error (RMSE), mean absolute error (MAE) and mean absolute percentage 

error (MAPE) loss criteria (Brailsford and Faff 1996; Roni et al. 2017). 

Another study examines the performance of four GARCH (1,1) models including 

GARCH, E-GHARCH, GJR, APARCH using three distributions including Normal, 

Student-t, and Skewed Student-t in two major European stock indices, FTSE 100 and 

DAX 30. The result is that GJR and APARCH better forecast the volatility using daily 

data over 15 years in the two markets (Peters 2001; Bhowmik and Wang 2020). 

In another work, it is revealed that for forecasting the volatility of the US T-bill 

yields, the asymmetric GARCH outperform (Bali 2000; Sharma 2015). It is also 
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documented that E-GARCH is the best model for forecasting the exchange rate 

volatility (Balaban 2004; Sharma 2015). 

A volatility forecast for the S&P 500 index futures using the GARCH, E-GARCH 

and T-GARCH models shows that E-GARCH provides the most accurate forecasts of 

the future-realized volatility (Bali and Demirtas 2008; Sharma 2015). 

Lama et al. (2015) indicates the superiority of E-GARCH over classic GARCH and 

autoregressive integrated moving average (ARIMA) in modelling and forecasting the 

behaviour of agricultural commodities prices. The criteria are root mean square error 

(RMSE) and relative mean absolute prediction error (RMAPE). Their study supports 

the theory that the E-GARCH model can better capture asymmetric volatility. 

Agricultural commodities’ price is volatile and noisy in nature and this way it is 

comparable with stock markets. The prices also appear to reveal asymmetric behaviour 

(different responses to recession and recovery). 

The forecasting ability of several GARCH models (GARCH, E-GARCH, GJR and 

APARCH) have also been examined using different distributions functions (normal 

distribution, Student’s t-distribution and asymmetric Student’s t-distribution) for two 

Tel Aviv stock index returns. The result of the study indicates that the asymmetric 

GARCH with fat-tail densities are the most promising models in forecasting future 

volatility. The E-GARCH model using a skewed Student-t distribution is the most 

successful model (Alberg et al. 2008; Wang et al. 2020).  

Using Standard & Poor’s 100 stock index and evaluating by the Superior Predictive 

Ability (SPV) test, it is indicated that the GJR-GARCH model achieves the most 

accurate daily volatility prediction from 1997 to 2003, closely followed by the 

EGARCH model (Liu and Hung 2010; Lin 2018). 

Using daily stock index return data from Romania (Bucharest Exchange Trading 

index) from 2001 to 2012, it is concluded that the TGARCH model is the most accurate 

in forecasting volatility. This study employs three asymmetric models (T-GARCH, E-

GARCH, and PGARCH), a wide range of error distribution assumptions for the error 

terms (the normal distribution function, the Student-t distribution function, and 

Generalized Error Distribution), and a relatively long period (Gabriel 2012; Drachal 

2017). 

Hu (2019) conducts a study for different time horizons, between various developed 

and emerging markets, to find out which one is better for the short time horizon and 

which one for the longer one. ARCH, GARCH, GJR-GHARCH, C-GARCH, 
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APARCH, GARCHX are the models in order to forecast out-of-sample conditional 

variances of stock markets. The performance is evaluated using multiple variance 

proxies including realized volatility, range-based volatilities, MSE, and Q-like loss 

functions. The result is that GARCHX that incorporates the volatility index (VIX) is 

superior at multiple horizons for S&P 500. For the remaining indices, mostly 

CGHARCH and APARCH are better.  

Dixit and Agrawal (2019) conduct a study using daily data of Bombay Stock  

Exchange (BSE) and National Stock Exchange (NSE) from 2011 to 2017. The 

outcome suggests that the P-GARCH model of (Ding et al. 1993) is the most suitable 

to predict and forecast the stock market volatility for both markets. P-GARCH model 

is an extension and combination of other  GARCH models to capture the leverage 

effect.  

Åstrand (2020) in a master’s thesis examines the performance of symmetric and 

asymmetric GARCH-family models in forecasting volatility during and post the 

financial crisis of 2008. The selected models are the basic GARCH and Integrated 

GARCH as symmetric and E-GHARCH, T-GHARCH, N-GHARCH, and APARCH 

as asymmetric models. The frequency is daily, and it is to evaluate the return of the 

OMX Stockholm 30 index against the realized volatility of the market as a proxy. All 

models underperform the real realized volatility and the difference among the models 

are small and Exponential GARCH outperforms the post-crisis period and I-GARCH 

and N-GHARCH are superior during the crisis. 

Overall, theoretically, it seems intuitive, and it also empirically has been supported 

by many studies that the more sophisticated models, by the inclusion of asymmetry 

variables in their models, better model the volatility. But is it that obvious? 

 

2.2.2. Findings in Favour of Classic GARCH models 

 

Although sophisticated models try to better capture the empirically approved 

stylized facts of the volatility, it is not always the case that the forecasting performance 

of the more sophisticated GARCH-family is impressive. In some cases, the findings 

are inconclusive and there is found no difference between the GARCH and asymmetric 

types of it (Ederington and Guan 2005; Sharma 2015). In some other cases, the simple 

GARCH models surprisingly perform best. Even if a heavily parameterised model 

could outperform the simpler models in terms of in-sample fitness, on the out-of-
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sample forecasting ability, the simpler models sometimes outperform the more 

advanced ones (Balaban 2004; Sharma 2015). 

In a study, the E-GARCH is outperformed by the other time series models for the 

long term forecasts (Cao and Tsay 1992; Sharma 2015). The Glosten-Jagannathan-

Runkle GARCH (GJR-GARCH) underperforms during the crash of 1987 (Franses and 

Van Dijk 1996; Granger and Poon 2001; Sharma 2015). 

Hou (2013) in an attempt to see whether the advanced GARCH models outperform 

the standard GARCH model in forecasting volatility, concludes that the GJR models 

overestimate the volatility under a high-volatile condition. 

Sharma (2015) finds that the standard GARCH model beat the more complex 

GARCH models and provides the best one-day-ahead forecasts of the variance. 

Comparing the daily variance forecasts of seven GARCH-type models for 21 stock 

markets of the world for the period 2000 to 2013 using multiple statistical tests, this 

study claims that the results are dependent on the selection of performance evaluation 

criteria and different market conditions. 

Obeng (2016) in a study for the forex market finds that the simple GARCH 

outperforms all the other models and then claims that special consideration should be 

taken on the simple models. This study investigates the forecasting power of ARCH, 

GARCH and E-GARCH models in forecasting exchange rate volatility in terms of 

both in-sample and out-of-sample performance evaluation using loss functions. 

To detect which is the best model among the GARCH-type model, (Costa 2017) 

using the Superior Predictive Ability (SPA) test from Hansen and Lunde (2005) and 

series of Mincer-Zarnowitz regressions, indicates that the asymmetric GARCH models 

cannot outperform the simple GARCH in forecasting next day conditional volatility. 

The focus of this research is on the NASDAQ-100 in the US market. 

Bhowmik and Wang (2019) using daily, weekly, and monthly closing prices of six 

Asian emerging stock market indexes from 2007 to 2016 compare ARMA and 

GARCH based on symmetric error statistics. The study suggests that the simple 

GARCH models appear to have the best fit for the data. 

Considering the empirical finding which is in contradiction with the assumption 

that the sophisticated is better, the question is what are the sources of difference among 

different models? The next section of the literature review tries to find a response to 

this question and this concept effectively is the pivotal point of the current dissertation. 
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2.3. What Makes a GARCH-type model powerful? 

 

A volatility model as the name suggests must be able to model and forecast 

volatility accurately. Theoretically, the more appropriate the common properties of 

financial time series could be captured by the model, the more accurate the model 

could be. That is the reason why the literature is dominated by examining the fitness 

of the models to the stylised facts of financial time-series. 

Engle and Patton (2007) in their paper outline the stylised facts about volatility that 

should be incorporated into a model. They use the Dow Jones Industrial index data to 

examine these stylised facts, and the ability of GARCH variants to capture these 

features (Engle and Patton 2007; Francq and Zakoian 2019). 

Based on both theory and the literature, for a volatility model to be an accurate 

model, firstly it should fit properly to in-sample dataset (capture the properties of the 

market with minimum estimation errors during the sampling period), and secondly, 

the model should work properly for any dataset other than the sampling period as well. 

In other words, the model should have forecasting power. One of the most dominant 

recommendations for the improvement of volatility models is that good forecasting 

performance needs a specification that can include the asymmetry of shocks and the 

leverage effect (Hansen and Lunde 2005; Bhowmik and Wang 2020). 

However, some authors have been critical of the predictive power of GARCH-type 

models. They claim that these models are solely powerful in in-sample parameter 

estimation but cannot perform well in terms of out-of-sample data and on the ex-post 

basis. In other words, some models with good in-sample fitness, forecast future 

volatility poorly, especially on longer horizons (Cumby et al. 1993; Jorion 1995; Huq 

et al. 2013; Wennström 2014; Brooks 2019). 

In contrast, Andersen and Bollerslev (1998) claim that if GARCH-type models are 

well-specified, they can in turn provide accurate forecasts. They believe that the 

problematic point is the volatility measurement criteria the models are judged with 

rather than the models themselves. Using GARCH (1,1) specification of Bollerslev 

(1986) on Deutschemark-U.S. Dollar and Japanese Yen- U.S. Dollar spot exchange 

rates, they find that daily ARCH and GARCH models perform well, explaining around 

50% of the ex-post variability. They introduce an alternative method using high-

frequently intraday data as more meaningful and accurate ex-post volatility 

measurement criteria. Theoretically, increasing the frequency of observations to an 
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infinitesimal interval causes the most accurate measure for the volatility factor. It is 

claimed that the models do have predictive power and the problematic part of the 

process is the measures evaluating their power (Andersen and Bollerslev 1998; Francq 

and Zakoian 2019). Some other studies had before shown that the out-of-sample 

forecast performance of the GARCH models depends on the choice of loss evaluation 

criteria. It is in support of the idea that it is the evaluation measures that are the source 

of difference, not the models themselves (Sharma 2015). 

Nonetheless, the literature includes studies seeking the areas of improvement for 

volatility forecasting models. Generally, a heavily parameterized model should be 

better able to capture the dynamics of the volatility compared to a relatively simple 

model.  

Studies document that using asymmetric GARCHs e.g., EGARCH improves the 

forecasting process of the exchange rate volatility (Balaban 2004; Sharma 2015). 

Another empirical work investigating the stock market volatility in 10 stock exchanges 

in Central and Eastern European countries during 1991-2008 confirms that models 

which allow for the inclusion of asymmetric variables, consistently outperform all 

other models considered (Alberg et al. 2008; Harrison and Moore 2012; Dixit and 

Agrawal 2019).  

According to different types of studies, a problem while using GARCH models is 

that they do not appropriately consider the skewness, kurtosis, and fat tails property of 

financial time series. To overcome this shortcoming, many studies have run models 

using asymmetric distribution functions rather than normally distributed density 

curves. These studies assert that the type of distribution function used in the models is 

a source of difference among various models in volatility forecasting quality. They 

differentiate the GARCH family models by the distribution function used in the model 

specification and compare their forecasting performance. The comparison of the 

normal distribution with non-normal ones shows that the asymmetric GARCH models 

under Student-t distribution are the best for characterizing the behaviour of the returns 

including serial correlation, asymmetric volatility clustering and leptokurtic 

innovations (Alberg et al. 2008; Wang et al. 2020). 

The importance of choosing an appropriate density function has also been 

emphasised in another empirical study conducted by Wennström (2014). To compare 

the estimation and forecasting performance of volatility models, (Wennström 2014) 

examines the performance of six models: The simple moving average, the 
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exponentially weighted moving average, the ARCH model, the GARCH model, the 

EGARCH model and the GJR-GARCH model in three different Nordic equity indices. 

This study implies that for an in-sample fitness, modelling the conditional mean using 

a heavier tailed error distribution rather than a normal distribution significantly 

improves the fit. 

However, using S&P 100 stock index and evaluating by the Superior Predictive 

Ability (SPV) test, it is strongly suggested that in order to improve the predictive 

power of GARCH family models, incorporating asymmetry components to the model 

is more important than error distribution specification (Liu and Hung 2010; Lin 2018). 

Selmi et al. (2015) suggest the application of Artificial Neural Networks (ANNs) 

as dealing with the nonlinearity of volatility data is problematic using conventional 

methods. 

A different type of study investigates if the inclusion of exogenous variables has an 

improving effect on volatility. This category of studies asserts that the volatility of 

stock markets in addition to being a function of the squared residuals and the lagged 

volatility of the time-series itself, could be a function of some exogenous financial and 

economic variables (Engle and Patton 2007; John et al. 2019).  

Chronopoulos et al. (2018) indicate that incorporating a variable from Google 

called Internet Search Volume Index (SVI) in various GARCH family models 

significantly improves volatility forecasts. The study uses US stock return (a daily 

frequency S&P500 index covering the period from 2004 to 2016 and daily internet 

search volume index (SVI) from Google).  

Attempting to improve the performance of volatility modelling, a recent stream in 

the academic literature uses the information content of the “Implied Volatility Index” 

(VIX) index by incorporating this index as an explanatory variable into the GARCH 

models’ specification. The logic behind this idea is that VIX is a forward-looking 

proxy for volatility and carries extra information that helps better capture the dynamics 

of the volatility of stock markets both in estimation and forecasting. Kanniainen et al. 

(2014) suggest that the volatilities extracted from VIX on the S&P 500, improves the 

models’ performance.  

Kambouroudis and McMillan (2016) using data from the US, the UK and France 

stock markets suggest that the inclusion of two independent variables (the VIX and 

volume) can improve volatility forecasts over a standard GARCH-based model. 
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Pati et al. (2018) considering the dataset from three Asia-Pacific stock markets 

including India, Australia, and Hong Kong from 2008 to 2016 confirm that for 

forecasting stock market volatility, incorporating the VIX can improve the GARCH 

family model forecasts. In a study, they incorporate implied volatility index as an 

explanatory variable to the conditional variance equation of the GARCH family model 

and notice that it reduces volatility persistence and improves the model. As a proxy for 

volatility in terms of in-sample fit, this study uses the return-based realized variance 

and the range-based realized variance. To evaluate the forecasting performance, the 

one-day-ahead rolling forecasts, and the Mincer–Zarnowitz regression and 

encompassing regression are employed. 

Hu (2019) also confirms that the inclusion of a precise volatility proxy of an index 

to the GARCH model significantly improves the forecast performance. 

 

To summarise the literature review, it should be mentioned that forecasting the 

forward-looking volatility is not straightforward and evaluating the forecasting 

performance is even more challenging. Additionally, a good in-sample fit does not 

necessarily imply a powerful out-of-sample forecasting performance. The literature 

encompasses all the effort and contributions that have been done so far to recognise 

the best-fitting and the most powerful models. There is no consensus about the source 

of difference in the predictive power of the models and the drivers of improvements in 

the models’ performance could vary depending on the market condition, the properties 

of the underlying asset being traded, and the period being investigated. The normal 

course of financial markets exhibits different behaviour than adverse events and 

financial crises, and the superiority of models can alter from one financial and business 

cycle to another. Volatility is chaotic in nature (Brooks 2019) and modelling and 

forecasting a chaotic variable is challenging, if not impossible. A rapidly growing body 

of knowledge in the literature in recent years has emerged employing Artificial 

Intelligence, Big Data, Unstructured Data Analytics e.g., analysis of the content posted 

on social media, and Natural Language Processing (NLP) to better capture the 

dynamics of volatility. This research does not enter this very new area of AI and Big 

Data, but it seems incorporating these techniques into modelling and forecasting 

volatility could potentially be a significant source of improvements in the models 

(Selmi et al. 2015). Considering the theoretical background and the previous empirical 

works, the current dissertation has selected two widely accepted asymmetric GARCH 
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models and wants to compare their performance together and with the simple classic 

GARCH and evaluate them with various measures in a relatively long period, to detect 

the drivers of the most accurate performance. In seeking the sources of difference in 

the performance of the various models, the current research compares the performance 

of the selected models in the normal market and the times of crisis. The research also 

examines the idea of incorporating an exogenous variable (VIX) into the GARCH-

family models to see if this could be a potential source of difference. The idea of 

conducting the models under different distribution functions has also been tested by 

comparing the performance of the models under a normal distribution and the t-student 

density function. The outcome of the research is recommendations to improve the 

GARCH models in forecasting the volatility of the UK stock market. The next chapter 

of this work describes the methodology under which the research has been carried. 
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Chapter 3. Research Methodology 

 

This chapter presents the methodology used to address the aim and objectives of 

the research in evaluating the performance of different GARCH-family in both 

modelling and forecasting volatility of the UK stock market. The chapter is divided 

into three sections. The first section concentrates on the research approach, the selected 

models, the way the models are estimated and forecasted, and the theoretical 

considerations about the selected methods and the methodology. The second section 

explains the evaluation criteria for the performance of the selected models in detail. 

The final section of this chapter also describes the datasets used to conduct the 

research, their main sources, the sampling period and sub-periods of the research, and 

the reason behind the selected datasets and time periods. 

 

3.1. Research Approach 

 

This research aims to evaluate the performance of selected GARCH-type models in 

estimation and forecasting weekly volatility of the UK stock market during 2000-2020. 

The FTSE-100 is selected as a proxy for the UK market and the study tries to see if 

there are models that systematically outperform the other ones and if so, which 

conditions make some models superior over the other ones. 

The strategy employed to carry the research is a quantitative analysis using the 

publicly available weekly datasets of the UK’s FTSE 100 index and the volatility index 

of the FTSE 100. Based on the literature and theoretical background, the first two steps 

in the volatility model’s specification are data inspection and testing for stylized facts 

of the volatility of financial markets. The goal of these steps is to see if the models fit 

the selected data over the selected period. The next step is to compare the different 

models amongst the fitting models in terms of in-sample fit and out-of-sample forecast 

performance (Satchell and Knight 2011).  

The defined process is to take the weekly observations of the FTSE 100 index (𝐼𝑡) 

and to calculate its weekly logarithmic return using Equation (1). The log-returns are 

used in the literature to increase the likelihood that the process is stationary. However, 

the standard tests for stationarity are applied to make sure the process is stationary. 
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𝒓𝒕 = 𝒍𝒐𝒈𝑰𝒕 − 𝒍𝒐𝒈𝑰𝒕−𝟏 (𝟏)                                                       

 

An iterative process of identifying, estimating, and checking proposed by the Box- 

Jenkins approach is applied to the time series analysis (see Anderson (1977) and 

Makridakis and Hibon (1997) for some of the early explanations). The data are 

examined for common characteristics of financial series (volatility clustering, 

leptokurtosis, heteroscedasticity, and autocorrelation in the residuals) before running 

the models. The data are also tested for the ARCH effect using the Lagrange Multiplier 

test of Breusch and Pagan (1980) to see if the GARCH-type models are applicable. 

The examination period is over 2000-2020. However different sub-periods have been 

examined separately to detect the effects of different market situations. 

Residual diagnostic checks have been conducted after running each model to make 

sure that little Arch effect, serial correlation, heteroscedasticity, and leptokurtosis have 

been left over. The logic behind this is to see if the models can capture all these effects.  

The selected models are the standard GARCH model, the Exponential GARCH 

model, and the JGR-GARCH model. 

 

3.1.1. Standard GARCH Model 

 

According to the literature (amongst others Franses and Van Dijk (1996) and 

Bhowmik and Wang (2019)), to model the volatility of returns, the GARCH (1,1) is 

empirically dominant since it is parsimony compared to the higher orders of GARCH 

(p,q). Hence the selected order to carry this research is GARCH (1,1). 

Based on Brooks (2019), Equation (2) specifies the conditional variance equation 

which is aimed to be estimated using the GARCH process. 

 

𝝈𝒕
𝟐 = 𝜶𝟎 + 𝜶𝟏𝒖𝒕−𝟏

𝟐 + 𝜷𝟏𝝈𝒕−𝟏
𝟐  (𝟐) 

                                             

Where 𝜎𝑡
2 is the conditional variance, 𝑢𝑡−1

2  are the squared lagged residuals (ARCH term), 

𝜎𝑡−1
2  is the lagged conditional variance (GARCH term), and 𝛼𝑖 > 0, 𝛽𝑖 > 0 

 



 

20 
 

To generate the error terms used in Equation (2), the conditional mean equation is 

defined as a simple equation with solely a constant term. 

 

3.1.2. Asymmetric GARCH Models 

 

Standard GARCH models treat the positive and negative movements of markets 

equally and in a symmetric way. By incorporating extra terms into the standard model, 

the asymmetry could be considered. This way the responses to negative shocks will be 

different from positive shocks, compatible with reality. Two asymmetric models are 

used in the research. The GJR-GARCH and the Exponential-GARCH. 

 

The GJR-GARCH Model 

 

Based on Glosten et al. (1993) and Brooks (2019), the GJR-GARCH model is 

specified by Equation (3). 

 

𝝈𝒕
𝟐 = 𝜶𝟎 + 𝜶𝟏𝒖𝒕−𝟏

𝟐 + 𝜷𝟏𝝈𝒕−𝟏
𝟐 + 𝜸𝒖𝒕−𝟏

𝟐 𝑰𝒕−𝟏 (𝟑) 

Where 𝜎𝑡
2 is the conditional variance, 𝑢𝑡−1

2  is the ARCH term, 𝜎𝑡−1
2  is the GARCH term, and 

𝛾𝑢𝑡−1
2 𝐼𝑡−1 is the asymmetry term. 

 

by incorporating an indicator function, 𝑰𝒕−𝟏, into the model, the asymmetry has 

been considered. This way the responses to negative shocks will be different from 

positive shocks which is more realistic and compatible with the empirically proved 

stylised facts about the volatility of the stock market. 𝑰𝒕−𝟏 takes zero when the shocks 

are positive, turning back the GJR-GARCH model to a standard GARCH. It also takes 

one for negative shocks, adjusting the volatility towards higher amounts due to the 

leverage effect. 
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The Exponential-GARCH Model 

 

Based on Nelson (1991), Exponential-GARCH could be specified as Equation (4). 

 

 𝒍𝒏(𝝈𝒕
𝟐) = 𝒂𝟎 + 𝜷𝟏𝒍𝒏𝝈𝒕−𝟏

𝟐 + 𝜸
𝒖𝒕−𝟏
𝝈𝒕−𝟏

+ 𝛉
|𝒖𝒕−𝟏|

𝝈𝒕−𝟏
 (𝟒) 

Where 𝑢𝑡
2 is the conditional variance, 𝜃𝑖

|𝑢𝑡−1|

𝜎𝑡−1
 is the ARCH term, 𝛽1𝑙𝑛𝜎𝑡−1

2  is the GARCH 

term, and 𝛾𝑖
𝑢𝑡−1

𝜎𝑡−1
  is the asymmetry term. 

 

When 𝛾𝑖 < 0 and at the same time 𝑢𝑡−𝑖 < 0 (there is a negative shock), the third 

term becomes larger, adjusting the volatility towards higher amounts due to the 

asymmetry effect. Again, this is more realistic and better captures the dynamics of the 

volatility of stock markets. 

 

3.2. Evaluation of the Models 

 

The research objectives are addressed through evaluations of performance of these 

models by using several measures to determine the coefficient’s significance and the 

model’s predictive ability. The differentiating point of this research is its wide range 

of performance evaluation criteria trying to find the drivers of the superiority of models 

and to provide recommendations to improve the volatility models. The evaluation has 

been done in two main areas. The first area is the performance of models in estimation 

(Goodness-of-Fit), and the second one is their ability in forecasting. To compare the 

fit and forecast performance and accuracy of models, the following criteria are chosen. 

 

3.2.1. In-sample evaluation criteria 

 

The value of the log-likelihood, and three types of Information Criteria including 

Akaike Information Criteria (AIC) introduced by Akaike (1973), Schwartz Criterion 

(SBC) introduced by Schwarz (1978), and the Hannan-Quinn Criterion (HQC) 
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introduced by Hannan and Quinn (1979) are selected as in-sample evaluation criteria 

(Fit performance). 

The higher the value of the log-likelihood, the better-performing the model. In 

terms of the Information criteria, all the criteria including the AIC are required to be 

lower for a better model. 

 

3.2.2. Out-of-sample evaluation criteria 

 

Conducting a series of Mincer-Zarnowitz regressions, the Root Mean Square Errors 

(RMSE), the Mean Absolute Error (MAE), the Mean Absolute Percentage Error 

(MAPE), and the Symmetric MAPE are the criteria selected for the out-of-sample 

performance evaluation (Forecast performance). 

According to Kambouroudis and McMillan (2016), The first criteria, the Mincer-

Zarnowitz regressions framework, effectively examines the statistical significance of 

the difference between the realised volatility and the forecast value. To do so, the 

literature firstly recommends that a realized volatility should be calculated as a 

benchmark. A common benchmark is the measure specified by Equation (5) based on 

Pagan and Schwert (1990) and Franses and Van Dijk (1996). 

 

𝝎𝒕 = (𝒓𝒕 − �̅�)
𝟐 (𝟓) 

Where 𝑟𝑡 is the return of each week and �̅� is the average return. 

 

Furthermore, to examine the forecast accuracy of the model in predicting the 

realized volatility, it is needed to examine whether the one-week-ahead forecasted 

amounts using the selected models are significantly different from the realised ones 

using Equation (5) or not. According to Engle and Patton (2007) and Kambouroudis 

and McMillan (2016), this is examined by regressing the values of 𝝎𝒕 from Equation 

(5) on a constant and the one-week-ahead forecasted variances as Equation (6).  

 

𝝎𝒕 = 𝜶 + 𝜷𝒉𝒕 + 𝒖𝒕 (𝟔) 

Where 𝜔𝑡 is the realised volatility of each week, 𝛼 and 𝛽 are the regression coefficients, ℎ𝑡 

is the one-week-ahead forecasted variance and 𝑢𝑡 is the error term of the regression. 
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Then two statistical hypothesis tests about the slope and intercept of the regression 

are conducted to see if the forecasted variable and the realised variable are moving 

together. The rest of the criteria including RMSE, MAE, MAPE, and Symmetric 

MAPE are statistical metrics and need to be lower for better models.  

 

3.3. Data 

 

Two datasets are used to carry the research. The main dataset consists of weekly 

closing values of the FTSE 100 index over 20 years of 2000-2020. The FTSE 100 

index is a value-weighted index of the shares of the 100 companies with the highest 

market capitalization that are traded on the London Stock Exchange (London Stock 

Exchange 2021). The intention of choosing the 20 years is to include the data from the 

global credit crisis of 2007, the European sovereign debt crisis of 2011, and the health 

crisis of 2019 along with the normal times of the economy. The values are the ones 

recorded on Wednesdays. The source of data is London Stock Exchange (LSE) 

website’s database (LSE 2021). The examination period is split into two sub-periods, 

the estimation sub-period, and the forecasting sub-period. The estimation sub-period 

is from January 2000 to mid-September 2007. This period is used to find the best in-

sample fitting models among the selected models. The remaining period from mid-

September to the end of 2020 is used for the examination of the out-of-sample 

forecasting accuracy. The mid-September has been marked by the Bank of England 

(BOE) as the beginning of the financial crisis of 2007 in the UK and that is why the 

estimation sub-period end at that point. This is chosen to examine if the selected 

models that have an accurate in-sample performance, can also forecast accurately, 

especially when it comes to the prediction of the volatility of returns during crises and 

adverse events. A relatively long out-of-sample period has been included to avoid a 

falsely optimistic picture of a model’s predictive power stem from model over-fitting 

leading to spurious conclusions. Chart 1 indicates the weekly values of the index over 

the examination period. 
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Chart 1: The FTSE 100 Weekly Values Throughout the Study 

 

 
 

Another dataset consists of the weekly value of the Implied Volatility Index of the 

FTSE 100 (VIX). The VIX is a forward-looking measure of the volatility that investors 

expect to see in the future. It is a benchmark to quantify market expectations of 

volatility and sometimes is called the “Fear Index” (Kambouroudis and McMillan 

2016). This variable is used as an exogenous variable incorporated into the GARCH 

to examine if can improve the ability of models. The period this variable is used is 

from the start of 2013 to the end of 2018. This is a period the UK economy relatively 

has recovered from the financial crisis of 2007, and the European sovereign crisis of 

2011, and before it is hit by the health crisis of 2019 meaning this is chosen as a proxy 

for a relatively normal course of economy and markets. The source of this database is 

the historical database from the Investing website (Investing Website 2021). 

To summarize the methodology, it should be mentioned that the weekly returns of 

the FTSE 100 are computed as continuously compounded returns on the index over 

the period t-1 to t using Equation (1) of the research. The iterative process of 

identification, estimation and diagnostic checks of the Box-Jenkins approach is 

employed. Before starting the estimation and in the identification phase, the datasets 

have been tested for stylised facts about volatility and the ARCH effects. In the 

estimation phase, the selected GARCH-family models have been conducted to 

compare their goodness of fit over the examination period. The period then has been 

split into two sub-periods, one for the estimation purpose and the second for the 

forecasting purpose. The EViews software is used for estimation and forecasting. 

Based on Damodar N (2004) and Brooks (2019), the estimation method is the 
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maximum likelihood instead of the ordinary least squares (OLS) method. To evaluate 

the effectiveness of the models both in-sample and out-of-sample, different criteria 

including the value of the log-likelihood, AIC, SBC and HQC have been used. To 

evaluate out-of-sample performance, along with the other criteria (RMSE, MAE, 

MAPE, and the Symmetric MAPE), a one-week ahead static forecast is applied 

meaning that after each estimation sub-period, a one-week ahead volatility has been 

forecasted. Then the real data has been added to the dataset, and again a one-week 

ahead forecast has been conducted. The process has been repeated until the end of the 

out-of-sample forecasting sub-period. Then a series of Mincer-Zarnowitz regressions 

is conducted to statistically examine the difference between the realised and predicted 

volatility. To meet the aim and objectives of the research and ultimately present 

recommendations for the improvement of the volatility models, the tests have been 

repeated by excluding the crises times to see the performance of the models in normal 

times. The models have also been tested by the inclusion of an exogenous variable 

called VIX to the models to examine if it can improve the performance of the models. 

Finally, different tests have been run using the t-student distribution function to test 

the performance of the model under a different distribution function. Finally, in the 

diagnostic checks phase of the Box-Jenkins approach, some common tests have been 

conducted to make sure the models have captured the dynamics of the volatility 

adequately. This process has been repeated for all hypothesis tests. Chapter 4 runs the 

above-mentioned tests and presents the findings, and their analysis and discussion. 
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Chapter 4. Empirical Results and Analysis  

 

This chapter describes the findings of the research and their analysis and discussion. 

It is divided into three sections. The first section overviews the descriptive statistics of 

the FTSE 100 index and tests for the empirically approved stylised facts about 

financial time series to identify the overall suitability of the GARCH-family models. 

This section tries to examine if the GARCH-family models are appropriate for the 

modelling and forecasting of the volatility of the FTSE 100 index (identification 

phase). The second section conducts the models under different scenarios (estimation 

phase), shares the finding of the tests, and tries to critically analyse them considering 

the literature and the theoretical background. The third section of this chapter conducts 

some statistical diagnostic checks on the selected models to examine their adequacy in 

modelling and forecasting volatility (diagnostic checks phase). 

 

4.1. Identification 

 

4.1.1. Descriptive Statistics and Tests for the Stylized Facts 

 

Using Equation (1), the weekly logarithmic returns of the FTSE 100 over 2000-

2020 have been calculated to convert the time-series to a stationary process. The first 

step before using GARCH models is to test for the Stylised Facts and see if the dataset 

is appropriate to estimate the models using the GARCH family. Chart 2 presents a 

visual presentation of the main time series. The chart seems like a white noise process 

with some volatility clustering and volatility persistence over the examination period. 

Before any formal test, it seems that the volatility has more persistence and longer 

memory around the years 2002, 2008, 2011, and 2019. These times could be 

approximately specified by some major financial crises namely bursting the dot-com 

bubble of the USA, the global financial crisis of 2008, the European sovereign crisis 

of 2011, and the global health crisis of 2019 (Pilbeam 2018). 
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Chart 2: Weekly Log-Returns of FTSE 100 over 2000-2020 

 

 
 

 

Figure 1 indicates the histogram and statistics of the time series over the 

examination period. As it shows, the index has a small positive average weekly return 

of 0.000122% over the period. The weekly standard deviation is also equal to 1.06%, 

which is much greater than the mean. Median is also a small positive amount. The 

minimum amount of the return over the period in absolute term is bigger than the 

maximum return showing the asymmetric range of returns. This is also supported by 

the evidence for negative skewness. The skewness coefficient from Figure 1 is less 

than zero indicating that the returns distribution is negatively skewed. This is a 

common feature of equity returns (Engle and Patton 2007; Brooks 2019). There is also 

a substantial excess kurtosis (A normal distribution has a kurtosis of 3). The kurtosis 

coefficient, which is a measure of the thickness of the tails of the distribution, is very 

high (8.53). This observation is also not strange regarding financial time series.  

The test statistic of the Jarque-Bera (JB) normality test from Figure 1 is a huge 

number equal to 1436.792. The null and alternative hypotheses for the normality test 

are as follows. 

 

𝐻0: 𝑇ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎 𝑛𝑜𝑟𝑚𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛  

𝐻1: 𝑇ℎ𝑒𝑟𝑒 𝑖𝑠 𝑛𝑜𝑡 𝑎 𝑛𝑜𝑟𝑚𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 
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The JB statistic has a Chi-squared distribution with the degrees of freedom of 2. 

The critical values from the Chi-squared tables at 1%, 5%, and 10% levels for 2 

degrees of freedom are respectively 9.2, 5.99, and 4.605. Therefore, the JB is so greater 

than the critical value at all levels of significance, rejecting the null that residuals are 

normally distributed. Therefore, the distribution is not normal. This is what was 

expected based on the literature about empirically approved stylised facts about 

financial data (Engle and Patton 2007; Brooks 2019). Overall, the data from Figure 1 

confirm the common properties of the financial datasets. 

Figure 1: Descriptive Statistics and Histogram 

 

 

4.1.2. Stationarity Test 

 

Using the Augmented Dickey-Fuller test for stationarity (see Figure 2), the ADF 

test statistic is -35.12 and since it is less than all the critical values at all levels of 

significance (-3.44 at 1% level, -2.86 at 5% level, and -2.57 at 10% level), it is 

significant. Therefore, the null hypothesis that implies that the series has a unit root 

can be rejected and it can be claimed that the series is stationary over the examination 

period. This is another factor confirming the appropriateness of using the GARCH. 

 

4.1.3. Arch Effects 

 

Using the Lagrange Multiplier test (see Figure 3), both T×R-squared the F-statistic 

are significant because their test statistics are huge and their p-values are zero. The p-

values of zero indicate that the probability that “the null hypothesis is true” is almost 
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zero. Therefore, the null hypothesis that implies that there is no Arch effect can be 

rejected using both F-statistic and the T×R-squared and the series exhibit evidence of 

heteroscedasticity (Arch effect) suggesting the use of the GARCH models for volatility 

modelling of the FTSE 100. 

Figure 2: The ADF Test Results 

 

 

Figure 3: The Heteroskedasticity Test 

 

 

Null Hypothesis: FTSE_100_LOG_RETURNS has a unit root
Exogenous: Constant
Lag Length: 0 (Automatic - based on SIC, maxlag=12)

t-Statistic   Prob.*

Augmented Dickey-Fuller test statistic -35.12399  0.0000
Test critical values: 1% level -3.436165

5% level -2.863996
10% level -2.568129

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(FTSE_100_LOG_RETURNS)
Method: Least Squares
Date: 08/12/21   Time: 14:19
Sample (adjusted): 1/19/2000 12/30/2020
Included observations: 1084 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.  

FTSE_100_LOG_RETURNS(-1) -1.065572 0.030337 -35.12399 0.0000
C 1.24E-06 0.000323 0.003860 0.9969

R-squared 0.532754     Mean dependent var 3.88E-06
Adjusted R-squared 0.532322     S.D. dependent var 0.015529
S.E. of regression 0.010620     Akaike info criterion -6.250375
Sum squared resid 0.122025     Schwarz criterion -6.241171
Log likelihood 3389.703     Hannan-Quinn criter. -6.246891
F-statistic 1233.694     Durbin-Watson stat 2.004294
Prob(F-statistic) 0.000000

Heteroskedasticity Test: ARCH

F-statistic 271.6691     Prob. F(1,1082) 0.0000
Obs*R-squared 217.5490     Prob. Chi-Square(1) 0.0000

Test Equation:
Dependent Variable: RESID^2
Method: Least Squares
Date: 08/12/21   Time: 15:17
Sample (adjusted): 1/19/2000 12/30/2020
Included observations: 1084 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.  

C 6.24E-05 8.97E-06 6.959797 0.0000
RESID^2(-1) 0.447978 0.027179 16.48239 0.0000

R-squared 0.200691     Mean dependent var 0.000113
Adjusted R-squared 0.199952     S.D. dependent var 0.000310
S.E. of regression 0.000277     Akaike info criterion -13.54041
Sum squared resid 8.33E-05     Schwarz criterion -13.53120
Log likelihood 7340.900     Hannan-Quinn criter. -13.53692
F-statistic 271.6691     Durbin-Watson stat 1.992428
Prob(F-statistic) 0.000000



 

30 
 

4.1.4. Autocorrelation Effects 

 

The correlogram of the series’ return also shows evidence of autocorrelations in 

some lags confirming the need for the autoregressive conditional heteroscedasticity 

models to capture the autocorrelations (see Figure 4). According to Brooks (2019), a 

good approach to realise autocorrelation is to construct a confidence interval. At the 

level of significance of 5%, the non-rejection area will be: 

±1.96 ×
1

√𝑇
= ±1.96 ×

1

√1085
= ±0.059 

Where T is the sample size equal to 1085 observations. 

 

The amounts of Autocorrelation Function (AC), and the Partial Autocorrelation 

Function (PAC) should be compared with the non-rejection area (±0.059). Figure 4 

shows that the amounts of AC and PAC for lags 1 and 7 are outside the confidence 

interval and this is the evidence of Autocorrelation for the 7th lag (for the first lag this 

is normal to be outside the area). This confirms the need for the autoregressive 

conditional heteroscedasticity models to capture the autocorrelations. 

Figure 4: Q-stat, AC, and the PAC of Standardised Return 

 

 

 

To conclude this section, the identification phase of the Box-Jenkins approach, the 

descriptive statistics and the examination of the general properties of the time series 

shows that the GARCH family models are generally appropriate for the research 

objectives since the data meet the general prerequisites of the GARCH models. The 

Date: 08/12/21   Time: 14:34
Sample: 1/12/2000 12/30/2020
Included observations: 1085

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 -0.066 -0.066 4.6769 0.031
2 -0.031 -0.036 5.7329 0.057
3 0.006 0.001 5.7707 0.123
4 -0.049 -0.050 8.3685 0.079
5 0.041 0.035 10.195 0.070
6 -0.022 -0.021 10.731 0.097
7 -0.084 -0.085 18.517 0.010
8 0.044 0.030 20.666 0.008
9 -0.004 -0.001 20.684 0.014

10 -0.049 -0.051 23.302 0.010
11 -0.027 -0.040 24.087 0.012
12 -0.008 -0.007 24.166 0.019
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next section runs the selected models in different sub-periods and under different 

scenarios to address the research aim and objectives (estimation phase of the Box-

Jenkins approach). For the ease of following the text, the next section is organised in 

the same order as the research objectives are defined.  

 

4.2. Estimation and Empirical Results 

 

The first objective of the research is to evaluate the ability of standard GARCH, 

Exponential GARCH, and the GJR-GARCH in modelling and forecasting the weekly 

volatility of FTSE-100. To address this objective, the examination period has been 

split into different sub-periods. All the basic tests presented in Section 4.1 of this 

research are also repeated for every single sub-period being examined. The results 

indicating the suitability of GARCH-family methods for all sub-periods are reported 

in Appendix B. The two main sub-periods are the estimation sub-period containing 

data from the January of 2000 to mid-September of 2007, and the forecasting sub-

period from mid-September of 2007 to the end of 2020. The models are run for both 

estimation and forecasting sub-periods and are evaluated using the specified criteria. 

The second objective of the research is to find if non-linear GARCH models can 

systematically outperform the standard GARCH model and if so, what is the best-

fitting model among two variants of the non-linear GARCH models. Sections 4.2.1 

and 4.2.2 presents the findings of the research regarding the first and second objectives. 

The third objective is to compare the accuracy of models in the normal course of 

the economy with the crisis periods and examine if distressed markets’ characteristics 

alter the performance of models. To address this objective, another sub-period is 

selected. This is from the beginning of 2013 to the end of 2018. This is a period the 

UK economy relatively has recovered from the financial crisis of 2007 and the 

European sovereign crisis of 2011, and it is before hitting by the health crisis of 2019 

(Bank of England 2021). This period is chosen as a proxy for a relatively normal course 

of economy and markets. This objective is addressed in Section 4.2.3 of this research. 

The fourth and final objective of the research is to explore possible sources of 

improvements in models to ultimately provide recommendations benefitting both 

future empirical works and stock market professionals. To address this objective, 

firstly the models are evaluated after incorporating an exogenous variable called the 
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implied volatility index of the FTSE 100 (the VIX). Secondly, the models are 

compared using t-student and normal distribution functions. And finally, the impact of 

jointly inclusion of the VIX and using the t-student function are examined in the 

improvement of the selected models. The subperiod of the inclusion of the VIX 

variable and testing under different distribution functions is also the normal period of 

the market. This way the performance of the models can be assessed after effective 

controls for the influences of the financial crises. This objective is addressed in Section 

4.2.4 of this research. 

 

4.2.1. Evaluation of the In-sample Performance of the Models 

 

The estimation sub-period is covering the January of 2000 to mid-September of 2007 

and it tests the in-sample performance of the selected models. After running the tests 

explained in Section 4.1 confirming the series is stationary, there is Arch effect, and 

the stylised facts are confirmed in this sub-period (see Appendix B1), the three 

different GARCH models (standard GARCH, the GJR-GARCH, and the Exponential-

GARCH) have been run. The lag order for all three models is one. The statistical results 

of the estimation are summarised in Table 1. The detailed reports of the EViews 

software are presented in Appendix C. 

 

Table 1: The Results of the Model Estimations over the Estimation Sub-period 

 

Model Specification Variables P-value

Constant 0.00000618 0.0018

0.227 0.0000

0.723 0.0000

Constant 0.0000134 0.0000

-0.111 0.0000

0.654 0.0000

0.601 0.0000

Constant -1.093 0.0000

0.894 0.0000

-0.281 0.0000

0.097 0.0815

E-GARCH

Coefficients

GJR-GARCH

GARCH
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Interpretation of the GARCH Estimation 

 

The 𝛼0 is the intercept of the conditional variance equation of the GARCH 

specification. It is small and significant (because its p-value is less than all significance 

levels meaning it is less than 1%, 5%, and 10%). 

The 𝛼1 is the coefficient of the squared residuals of the conditional variance 

equation. It is around 0.23 and significant. Because its p-value is almost zero; less than 

all significance levels of 1%, 5%, and 10%. This parameter shows the reaction of 

conditional volatility to market shocks. The significance of this parameter confirms 

that the UK market volatility is quite sensitive to the shocks of the market. This is 

supported by many studies in the literature (Engle 1982; Bollerslev 1986; Akgiray 

1989; West and Cho 1995; Chu et al. 2017; Costa 2017; Bhowmik and Wang 2020). 

The 𝛽1 is the coefficient of the GARCH term of the conditional variance equation. 

It is 0.72, a big number and since the p-value of this coefficient is also almost zero, 

less than all significance levels of 1%, 5%, and 10%, it is also significant. This 

parameter shows the persistence of the volatility suggesting strong evidence that the 

volatility of the FTSE 100 index over the estimation sub-period is quite persistent. This 

is supported by the previous works (Engle and Bollerslev 1986; McCurdy and Morgan 

1988; Baillie and Bollerslev 1989; Hsieh 1989; Andersen and Bollerslev 1998; Joshi 

2010; Li and Wang 2013; Francq and Zakoian 2019; Bhowmik and Wang 2020). 

Another implication of the GARCH estimation from Table 1 is that although the 

conditional volatility of the FTSE 100 is persistent over the estimation period, it is still 

mean-reverting meaning that it will revert to its long-run mean variance. According to 

John et al. (2019), mean reversion means that current information does not influence 

the long-run forecast of the volatility in stationary GARCH-type models, and the 

volatility will revert to its long-run level, at a rate given by the sum of 𝛼1 and 𝛽1, which 

is usually close to one for financial time series. The sum of the two parameters is a 

proxy for the rate of convergence of conditional variance to its unconditional average.  

From Table 1, the 𝜶𝟏 + 𝜷𝟏 = 0.227 + 0.723 = 0.95 is less than one showing that 

although the GARCH process is persistent, it is not infinite, and the conditional 

variance of the market will converge to the unconditional variance at the rate of 0.95, 

the mean-reverting rate. The unconditional volatility could be calculated using 

Equation (7). 
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�̅�𝟐 =
𝜶𝟎

𝟏 − (𝜶𝟏 + 𝜷𝟏)
 (𝟕) 

�̅�𝟐 =
0.00000618

1 − (0.227 + 0.723)
= 0.000124 

 

The average number of periods for the volatility to revert to its unconditional long-

run level (0.000124) is measured by the half-life of the volatility shock. According to 

John et al. (2019), the half-life of the volatility shock is given by Equation (8). 

𝝉 =
𝒍𝒐𝒈

(𝜶𝟏 + 𝜷𝟏)
𝟐

𝐥𝐨 𝐠(𝜶𝟏 + 𝜷𝟏)
 (𝟖) 

𝜏 =
𝑙𝑜𝑔

(0.227 + 0.723)

2
𝑙𝑜𝑔(0.227 + 0.723)

=
−0.32

−0.022
= 14.5 

 

Overall, For the FTSE 100, although the volatility of the returns is persistent over 

time, it is still mean-reverting. This finding is in agreement with Engle and Patton 

(2007) and John et al. (2019). Chart 3 visualises the conditional variance of the FTSE 

100 using the GARCH model over the estimation sub-period. There is strong evidence 

of volatility clustering in the graph especially around the years 2002 and 2003. As the 

graph shows, in those times the conditional variance of the market exceeds 0.0010 but 

most of the time it is spared over its long term average which is 0.000124 based on 

equation (7). 

Chart 3: Conditional Variance of the FTSE 100 using GARCH over the Estimation Period 
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Interpretation of the GJR-GARCH Estimation 

 

From Table 1, the intercept, and the coefficient of the ARCH and GARCH terms, 

𝛼0, 𝛼1 and 𝛽1 are significant because their p-value is almost zero, less than all levels 

of 1%, 5%, and 10%. This is again confirming that the GARCH family can model the 

volatility of the UK stock market. 

The 𝛼1 and 𝛽1 are -0.11 and 0.65 respectively and their significance again confirms 

the sensitivity of the UK market volatility to the shocks and persistency of the 

volatility. These agree with the results of the GARCH model and previous empirical 

studies. However, compared to the simple first-generation GARCH model, the GJR 

includes an extra term, 𝜸𝒖𝒕−𝟏
𝟐 𝑰𝒕−𝟏, to be able to account for the asymmetries of the 

volatility of the markets. The 𝛾 is the asymmetry coefficient. This coefficient for the 

GJR estimation is 0.60 (see Table 1). Because its associated p-value is again almost 

zero, 𝛾 is significant at all levels showing a strong effect of asymmetry in the FTSE 

100 volatility. This finding is supported by many studies (Olowe 2009; Chang et al. 

2011; Abdalla and Suliman 2012; Hou 2013; Okicic 2014; Banumathy and Azhagaiah 

2015; Bhowmik and Wang 2020). 

 

Interpretation of the Results of the E-GARCH Estimation 

 

The E-GARCH is another asymmetric volatility model and like the GJR-GARCH, 

is a way of parameterising the idea that in addition to the magnitude of the innovations 

(shocks), the sign of them could also influence the volatility. From Table 1, like the 

two previous models, the constant, the GARCH, and the ARCH terms, respectively 

𝛼0, 𝛽1 and θ are significant (θ is only significant at 10%) implying that the GARCH 

models can capture the volatility features of the UK stock market. 

The asymmetry term in the E-GARCH is defined as 𝜸
𝒖𝒕−𝟏

𝝈𝒕−𝟏
.  Based on Table 1, the 

𝜸 is -0.28 and significant (because its p-value is 0) implying that the 𝜸 is significantly 

different from zero. This again proves the presence of asymmetry effect in the UK 

stock market. In addition to the fact that the asymmetry term is significantly different 

from zero, it is less than zero (negative amount) confirming the theory that the impact 

of negative shocks on the volatility of the UK stock market is higher than the impact 

of positive shocks of the same magnitude. 
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In the next step, the three models are compared, and the best-fitting model is chosen. 

(see Table 2) 

 

Table 2: The In-Sample Performance of the Models over the Estimation Sub-period 

 

 

Based on the all in-sample evaluation criteria, the asymmetric GARCH models 

outpertform the standard GARCH, and the E-GARCH performs best among the three 

examined models. The best-fitting model is the model with the highest value of log-

likelihood and the lowest values of the Information Criteria (AIC, SBC, HQC). The 

main reason for the approved superiority of the E-GARCH is that it is a non-linear and 

asymmetric version of the GARCH and can accommodate for the asymmetries of 

volatility. This finding is supported by many previous studies. The findings of this 

section could be summed up as follows. 

• The coefficients of the conditional variance of all three models are statistically 

significant confirming that all GARCH models can fit and estimate the volatility of 

the UK stock market. This is in agreement with Bhowmik and Wang (2020) and 

contradiction with Åstrand (2020).  

• The volatility is appeared to be persistent and sensitive to shocks supported by Aliyev 

et al. (2020), and it is mean-reverting supported by John et al. (2019). 

• The asymmetry terms incorporated in the GJR-GARCH and E-GARCH are also 

statistically significant (see Table 1), showing evidence of a strong leverage effect as 

supported by both the literature and the theory. It implies that the impacts of negative 

shocks on volatility are higher than those of positive shocks of the same magnitude 

(see e.g., (Okicic 2014; Banumathy and Azhagaiah 2015; Aliyev et al. 2020)). 

• The non-linear asymmetric models perform better than the simple GARCH (see 

Table 2). It is supported by (e.g., Roni et al. 2017; Lin 2018; Dixit and Agrawal 2019; 

Hu 2019; Åstrand 2020). However, it is not supported by several studies (e.g., Hou 

2013; Sharma 2015; Obeng 2016; Costa 2017; Bhowmik and Wang 2019). 

Criteria GARCH GJR-GARCH E-GARCH

Log-Likelihood 1327.59 1345.90 1347.12

Akaike Information Criterion -6.651221 -6.738213 -6.744299

Schwarz Criterion -6.611156 -6.688132 -6.694218

Hannan-Quinn Criterion -6.635352 -6.718376 -6.724463
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• The E-GARCH is the best model for estimation purposes after being assessed by all 

4 in-sample evaluation criteria. The superiority of exponential GARCH has been 

confirmed in several studies (e.g., Liu and Hung (2010); Gabriel (2012); and Lin 

(2018)). 

 

4.2.2. Evaluation of the Out-of-sample Performance of the Models 

 

The results of Section 4.2.1 showed that the E-GARCH model is the best-fitting 

model. To completely address objectives 1 and 2 of the research, it is needed to 

evaluate the out-of-sample performance of the models and examine if the best-fitting 

model is also the best one for the forecasting purpose. The Forecasting sub-Period is 

chosen from the mid-September of 2007 to the end of 2020. The reason is to examine 

if the best-fitting model is also the best in forecasting, especially when it comes to 

times of crisis. To perform the evaluation, firstly one-week-ahead forecasting is 

conducted. The results are shown in Figure 5. 

 

Figure 5: The One-Week-Ahead Forecast of the E-GARCH 
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The first criterion for out-of-sample performance evaluation is that the one-week-

ahead forecasts of the E-GARCH model are compared with the realised variance. The 

proxy for the realized volatility is the measure of Equation (5) of this research. The 

result shows that the difference between the realised variance and the predicted 

variance is approximately zero except for the periods of the crisis (see Chart 4)  

 

Chart 4: Difference between the Realised and Predicted Volatility using E-GARCH 

 

 
 

 

The next step is to run statistical hypotheses to see if the predicted values for 

variance and the realised values are significantly different from zero. 

To examine this, the realised weekly volatility values are regressed against the one-

week-ahead forecasted values by conducting a series of Mincer-Zarnowitz regressions 

(see Equation (6)). Then two statistical hypothesis tests have been conducted. The first 

null hypothesis is that the slope coefficient of the regression is equal to one, and the 

alternative hypothesis is that the slope coefficient is different from one. This is to see 

if the forecasted variable and the realised variable are moving together one by one. 

The second null hypothesis is that the intercept coefficient is equal to zero and its 

alternative hypothesis is that the intercept coefficient is different from zero. The results 

of the tests show that the differences between the real data and the predicted data are 

not significantly different from zero and the predicted values using the E-GARCH are 

good predictors of the volatility of the FTSE 100. Figure 6 shows the results of the 

statistical regression and Table 2 summarise the results of the defined hypothesis tests. 
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Figure 6: The Regression of Realised against the Forecast Volatility using E-GARCH 

 
 

Table 3: The summary of Statistical Hypothesis Tests 

 

 

 

Dependent Variable: VOLATILITY
Method: Least Squares
Date: 08/11/21   Time: 17:52
Sample: 9/19/2007 12/30/2020
Included observations: 687

Variable Coefficient Std. Error t-Statistic Prob.  

C -5.50E-06 1.37E-05 -0.401565 0.6881
FORECAST 1.071854 0.072909 14.70125 0.0000

R-squared 0.239841     Mean dependent var 0.000120
Adjusted R-squared 0.238731     S.D. dependent var 0.000322
S.E. of regression 0.000281     Akaike info criterion -13.51388
Sum squared resid 5.41E-05     Schwarz criterion -13.50069
Log likelihood 4644.018     Hannan-Quinn criter. -13.50878
F-statistic 216.1268     Durbin-Watson stat 1.586959
Prob(F-statistic) 0.000000

Test 1 Test 2

Slope Coefficient Intercept Coefficient

Coefficient 1.071854 -0.0000055

Standard Error 0.072909 0.0000137

Null Hypothesis

Alternative Hypothesis

t-statistic

Critical values from t-student table for 

a two-tail distribution for t-2 

observations equal to 685 at 1%, 5%, 

and 10% levels

Decision about the null hypothesis Cannot reject the Null Cannot reject the Null

Result
The slope of the regression is not 

different from 1

The intercept of the regression 

is not different from 0

Interpretation

The E-GARCH model has a good 

predictivity power in forecasting 

volatility 

The E-GARCH model has a good 

predictivity power in forecasting 

volatility 

respectively 2.626, 1.985, and 1.660

𝛽 = 1

𝛽  1

𝛼 = 0

𝛼  0
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The results of the same process for the two other models (see Appendix D) shows 

that the GJR-GARCH and the simple classic GARCH do not exhibit good forecasting 

performance in terms of out-of-sample forecasting. To conclude the evaluation of the 

models using this criterion it can be claimed that the good in-sample performance of 

only the E-GARCH model can be translated to the good out-of-sample performance. 

This model was the best-fitting model in terms of in-sample estimation and comparing 

with the real-world data, it is the only model among the examined models of this 

research that can forecast accurately on an out-of-sample basis. 

Table 4 is constructed for comparison among the models. However, using the 

values of loss functions, the E-GARCH is not ranked the best meaning that although 

the good in-sample performance of the GARCH may translate into its good out-of-

sample performance within the Mincer-Zarnowitz series framework, using the loss 

functions as evaluation criteria does not confirm the superiority of the GARCH over 

the other two models. The loss functions including The RME, MAE, MAPE, and 

symmetric MAPE are error measuring criteria evaluating the forecasting models 

purely statistically and the lower these are, the better the models' forecast. 

 

Table 4: The Out-of-Sample Performance of Models over the Forecasting Sub-period 

 
 

The findings of this section could be summarised as follows: 

• Conducting a series of Mincer-Zarnowitz and comparing the performance of the 

models in forecasting the volatility of the UK market indicates that only the E-

GARCH have been able to forecast the volatility of the FTSE 100 over mid-

September of 2007 to the end of 2019 so that the difference between the realised 

volatility and the predicted volatility is statistically zero, suggesting a good predictive 

power of the E-GARCH. 

• The E-GARCH is the only model performing well in forecasting after evaluation 

within an M-Z framework that compares the value of the realised volatility with the 

predicted one. However, utilising the loss functions, the E-GARCH is not ranked the 

best among the models. This is in agreement with Sharma (2015) claiming that 

Criteria GARCH GJR-GARCH E-GARCH

Difference between the forecasted and the realised Volatility Significantly different from zero Significantly different from zero Statistically zero

Root Mean Squared Error 0.01095200 0.01095000 0.01095700

Mean Absolute Error 0.00765600 0.00768500 0.00771100

Mean Absolute Percent Error 112.32 106.09 121.47

Symmetric MAPE 179.89 190.98 181.32
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empirical results are dependent on the selection of performance evaluation criteria 

and different market conditions.  

• Only the E-GARCH model performs accurately in terms of both in-sample and out-

of-sample. 

• Only the performance of the E-GARCH model to predict the volatility of the market 

in times of crisis is acceptable. It is reasonable that the behaviour of Volatility during 

crises is changing. According to Joldes (2019), the downward movements of the 

market index during the crisis increase the volatility (risk) of the market. Not only 

does the volatility of individual assets in distressed markets increase, but the way the 

returns of assets covary altogether is also changing in times of adverse events and 

crises (Hull 2012). That is why the performance of the GARCH models in normal 

markets is different from that of a distressed market. This alteration has been 

supported by several studies )amongst others (Franses and Van Dijk 1996; Granger 

and Poon 2001; Sharma 2015)(. 

So far, the two first objectives of the research have been addressed. To address the 

third objective, another sub-period has been chosen which excludes the crises from the 

time series. This is to examine if the market and economy’s conditions alter the 

performance of the GARCH-family models. The next section explains it in more detail. 

  

4.2.3. Estimations for the normal condition of the market, 2013-2018 

 

To examine if the market and economy’s conditions alter the performance of the 

GARCH-family models, a different sub-period has been chosen as a proxy for the 

normal market. This period contains the FTSE 100 returns from the beginning of 2013 

to the end of 2018. The three selected models are run over this period and their 

estimation performance has been evaluated using 4 criteria (see Table 5). For detailed 

results see Appendix E. 
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Table 5: The In-Sample Performance of the Models over the Normal Market 

 

 

 

The findings of this section are listed as follows. 

• Different markets show different volatility dynamics and best-fitting models could 

be chosen firstly considering market type and condition (Granger and Poon 2001; 

Hansen and Lunde 2005; Bhowmik and Wang 2020). 

• The condition of the market alters the performance of the models. All information 

criteria exhibit the performance of the models has improved excluding the crisis. 

• The E-GARCH is the best-fitting model during the normal conditions.  

• Asymmetric models better fit the volatility of the UK market in normal conditions. 

• The criteria matter. The log-likelihood function does not confirm the improvement 

of the models excluding the crisis.  

 

Furthermore, in an attempt to make recommendations for the improvement of the 

models, firstly, an exogenous variable called VIX has been incorporated into the 

models and secondly, a different density function (t-student function) has been 

employed to examine if these can improve the ability of the models. The next section 

explains these tests in detail. 

 

4.2.4. Improvement of the models 

 

To address the last objective of the research, presenting recommendations for the 

improvement of the models, according to (Kambouroudis and McMillan 2016), the 

following approach is taken. Firstly, an exogenous variable called the the (VIX) has 

been incorporated into the variance equation of the models. The VIX is market 

participants’ expectations about future volatility and some scholars believe that it 

carries incremental information above the GARCH specification (John et al. 2019). 

Criteria GARCH GJR-GARCH E-GARCH

Log-Likelihood 1070.24 1076.54 1078.13

Akaike Information Criterion -6.901247 -6.935556 -6.945835

Schwarz Criterion -6.852919 -6.875146 -6.885425

Hannan-Quinn Criterion -6.881926 -6.911403 -6.921683
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After the inclusion of the VIX, the estimations have been conducted and the in-sample 

performance of the models has been compared with the baseline models (estimated in 

Section 4.2.3) to examine if the inclusion of an exogenous variable could improve the 

estimation performance of the models. Secondly, a different distribution function (t-

student) has been employed and the results under this distribution function is compared 

with the baseline models. Finally, the inclusion of the VIX and employment of the t-

student density function are jointly tested and compared with the baseline models. In 

this section, two categories of studies have been followed.  

The first group of studies assert that the volatility of stock markets in addition to 

being a function of the squared residuals and the lagged volatility of the time-series 

itself, could be a function of some exogenous financial and economic variables (Engle 

and Patton 2007; Kambouroudis and McMillan 2016). As a result of the inclusion of 

the VIX index as an independent variable into all three selected models during the 

normal market condition, the performance of the models has improved using all 

evaluation criteria. The value of log-likelihood has increased and the values of the 

three information criteria (AIC, SBC, and HQC) has decreased as a result of the 

inclusion of the VIX for all models showing the improvement of the estimation 

performance of all models. For detailed results of the test see Appendix F. Descriptive 

statistics of the new independent variable (VIX) and its stationarity and Lagrange 

Multiplier tests confirming that the VIX is stationary and has a GARCH effect are also 

presented in Appendix F. 

The second group of studies believe that the normal distribution function employed 

in the GARCH specification cannot completely capture the dynamics of the volatility 

of stock markets and employ fat-tail density function like t-student to improve the 

GARCH specification (Alberg et al. 2008; Wang et al. 2020). Contrary to these studies, 

performing the models of this research using the t-student density function cannot 

improve the performance of the models significantly. In some cases, it is observed that 

there are marginal improvements, but it is not consistent and meaningful (see 

Appendix G).  

The joint inclusion of the VIX and the t-student, are also not appeared to outperform 

the performance of the models that solely include the VIX. However, it outperforms 

the baseline models (see Appendix H). 

For ease of comparison, the results of the tests are summarised in Table 6. 
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Table 6: Comparison of Performance of the Models under Different Scenarios 

 

 

 

According to Table 6, the findings are summarised as follows. 

• Inclusion of the implied volatility index to all models improves their performance 

compared to the baseline models. This finding is in agreement with previous studies 

amongst others (Kanniainen et al. 2014; Kambouroudis and McMillan 2016; Pati 

et al. 2018). The economic implication of this finding is that the VIX contains 

information helping the volatility modelling of the FTSE 100 that is not captured 

by the baseline models’ specification. Theoretically, it is reasonable because VIX 

is defined as a proxy of expected market volatility and provides a forward-looking 

measure of the volatility of the stock markets. 

• Employing t-student error distribution specification does not have a meaningful 

effect on the performance of the models. This finding is supported by Liu and Hung 

(2010) and Lin (2018) asserting that incorporating asymmetry components to the 

model is more important than error distribution specification. However, it is 

inconsistent with the studies conducted by the works implying that using a heavier 

tailed error distribution rather than a normal distribution significantly improves the 

models, and the asymmetric GARCH models under skewed Student-t distribution 

better characterize the pattern of volatility (Alberg et al. 2008; Wennström 2014; 

Wang et al. 2020). 

 

The results of Section 4.2 strongly suggests that the asymmetric models better 

capture the dynamics of the UK stock market and the E-GARCH model is the best 

model among the examined models in terms of both estimation and forecasting 

performance. The final section of this chapter examines the adequacy of the E-

GARCH model based on the dominant diagnostic checks in the literature. 

 

Criteria Baseline VIX T-student
Jointly VIX and 

t-student
Baseline VIX T-student

Jointly VIX and 

t-student
Baseline VIX T-student

Jointly VIX and 

t-student

Log-Likelihood 1070.24 1090.31 1072.92 1088.48 1076.54 1091.79 1078.66 1092.49 1078.13 1100.41 1079.69 1100.36

Akaike Information Criterion -6.901247 -7.024695 -6.912111 -7.006323 -6.935556 -7.027737 -0.942766 -7.025845 -6.945835 -7.083543 -6.949476 -7.076770

Schwarz Criterion -6.852919 -6.964285 -6.851701 -6.933831 -6.875146 -6.955245 -6.870274 -6.941271 -6.885425 -7.011051 -6.876984 -6.992196

Hannan-Quinn Criterion -6.881926 -7.000543 -6.887959 -6.977341 -6.911403 -6.998754 -6.913784 -6.992032 -6.921683 -7.054560 -6.920940 -7.042957

GARCH GJR-GARCH E-GARCH



 

45 
 

4.3. Diagnostic Checks 

 

According to the Box-Jenkins approach, this research uses an iterative process of 

identification, estimation, and diagnostic checks. So far, the appropriate models have 

been identified based on the common properties of the time-series of the FTSE 100, 

the estimation has been done using the selected models, the performance of the models 

has been evaluated using the determined criteria, and the most powerful model has 

been selected. The evidence of the research strongly suggests that the E-GARCH is 

the best model among the examined models based on all in-sample and out-of-sample 

criteria. The final step of the Box-Jenkins approach is to examine the adequacy of the 

selected model using common diagnostic checks. This section runs these tests to assess 

the adequacy of the E-GARCH in estimation and forecasting the volatility of the FTSE 

100 index. 

 

 

4.3.1. Ljung-Box Q-statistic 

 

A common test for whether the E-GARCH model has adequately captured all the 

clustering, persistence, and autocorrelations in the volatility, is to examine the 

correlogram of the standardized squared residuals. For a volatility model to be 

adequate, the standardized squared residuals are required to be serially uncorrelated. 

(Engle and Patton 2007; John et al. 2019). 

Figure 10 indicated the correlogram of standardised residuals of the E-GARCH 

models (the best-fitting model of the research) and their equivalent AC, PAC, and Q-

statistics. 

The Q-stats of Figure 10 is calculated using Ljung–Box Q-statistic developed by 

Ljung and Box (1978). The statistic follows the Chi-square distribution asymptotically 

with 𝑚 degree of freedom and is specified as Equation (9). 

 

𝑄∗ = 𝑇(𝑇 + 2)∑
𝜏𝑘
2

𝑇 − 𝐾
        

𝑚

𝐾=1

(9) 

𝑤ℎ𝑒𝑟𝑒 𝑇 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒, 𝜏 𝑖𝑠 𝐴𝐶𝐹, 𝑎𝑛𝑑 𝑚 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑙𝑎𝑔 𝑙𝑒𝑛𝑔𝑡ℎ 
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Figure 7: Correlogram of Standardised Residuals 

 

 
 

 

The null and alternative hypotheses are as follows: 

𝐻0: 𝜏𝑘 = 0 

𝐻1: 𝜏𝑘  0 

The maximum examined lag length (m) is 12. All amounts of the Q-stat for all lags 

from figure 10 are lower than the critical values from the Chi-square distribution table 

at all significance levels of 1%, 5%, and 10% (see Figure 11). Therefore, the null 

hypothesis cannot be rejected. The non-rejection of the null hypothesis for the model 

implies that the autocorrelation functions for the lags up to a 12th lag, jointly together, 

are not significantly different from zero. This suggests that there is no evidence of 

autocorrelation among the residuals of the E-GARCH model. The model has captured 

all the autocorrelations which had initially been observed in the time series (see 

Section 4.1.4 of this research for the obvious evidence of initially observed 

autocorrelation in time series). This is supporting the adequacy of the E-GARCH in 

modelling and forecasting the dynamics of the volatility of the FTSE 100. 

 

 

 

 

 

 

Date: 08/29/21   Time: 07:43
Sample: 1/12/2000 9/12/2007
Included observations: 398

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob*

1 0.004 0.004 0.0079 0.929
2 -0.032 -0.032 0.4192 0.811
3 -0.061 -0.061 1.9056 0.592
4 0.036 0.036 2.4339 0.657
5 -0.039 -0.043 3.0467 0.693
6 0.014 0.013 3.1228 0.793
7 0.032 0.033 3.5274 0.832
8 -0.012 -0.018 3.5877 0.892
9 0.032 0.039 4.0119 0.911

10 -0.031 -0.032 4.4097 0.927
11 -0.016 -0.017 4.5167 0.952
12 -0.014 -0.007 4.5945 0.970

*Probabilities may not be valid for this equation specification.
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Figure 8: Critical Values from the Chi-Square Distribution Table 

 

 

4.3.2. Checking for the Normality of the Residuals 

 

GARCH-family modelling uses the Maximum likelihood method in estimation. A 

commonly employed assumption while using the Maximum likelihood method is that 

the residuals of the model follow a normal distribution. The results of the Normality 

test for the standardised residuals of the model indicates that the residuals of the model 

are not following a normal distribution and one of the assumptions of the maximum 

likelihood method is violated (see Fique 9) 

 

Figure 9: Histogram of the Standardised Residuals of the E-GARCH 
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Series: Standardized Residuals

Sample 1/12/2000 9/12/2007

Observations 398

Mean       0.003472

Median   0.131328

Maximum  3.007165

Minimum -4.876414

Std. Dev.   1.000113

Skewness  -0.709022

Kurtosis   4.321742

Jarque-Bera  62.31765

Probability  0.000000 
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From Figure 1, the test statistic of the Jarque-Bera normality test (Jarque and Bera 

1987) is a huge number equal to 62.31 and From the Chi-squared distribution tables, 

the critical values at 1%, 5%, and 10% levels for 2 degrees of freedom are respectively 

9.2, 5.99, and 4.605 (see Figure 8). Therefore, JB is so greater than the critical values 

and the null hypothesis that implies "𝑇ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎 𝑛𝑜𝑟𝑚𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛” can be 

rejected, and the residuals are not normally distributed.  

 

The histogram and the amount for the mean, median, maximum and minimum also 

confirm the result of the test. The skewness coefficient is less than one indicating that 

the returns distribution is negatively skewed. There is also a substantial excess kurtosis 

over 3. However, according to Bollerslev and Wooldridge (1992) even if the 

distribution of the residuals is not normal, the maximum likelihood estimates of the 

parameters of the GARCH model are consistent (Bollerslev and Wooldridge 1992; 

Engle and Patton 2007; John et al. 2019) so overall the E-GARCH adequately captures 

the dynamics of the volatility of the FTSE 100. 
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Chapter 5. Conclusion 

 

5.1. Summary and Conclusion 

 

This research evaluated the performance of three selected GARCH models 

including standard GARCH, and its two asymmetric extensions, the GJR-GARCH and 

Exponential-GARCH, in estimation and forecasting the weekly volatility of the FTSE 

100 during 20 years of 2000-2020.  

The conditional volatility of the FTSE 100 was found to be persistent, with a 

volatility half-life of 14.5 weeks, yet mean-reverting. The negative return innovations 

of the market were found to have an impact on conditional volatility more than positive 

return innovations of the same magnitude, confirming the asymmetry effect.  

The empirical findings of the research revealed that the E-GARCH model which is 

an asymmetric extension of GARCH is the best fitting model in terms of in-sample 

performance confirming the idea supported by many previous works that heavily 

parameterized models which account for the asymmetries of the returns can better 

capture multiple dimensions of volatility dynamics. 

Additionally, within an MZ regression framework and using different criteria, the 

evaluation of the performance of GARCH-family models by producing one-step-ahead 

volatility forecasts for the UK market revealed that the good estimation performance 

of the E-GARCH may translate into its good out-of-sample performance as well, and 

the E-GARCH outperformed the other two models both in estimation and forecasting. 

After excluding the well-known crisis from the time series it was seen that the 

performance of the models significantly changed confirming that adverse events alter 

the ability of the GARCH models. During the normal market condition, the in-sample 

performance of the models improved. 

The research also found evidence consistent with the theoretical result that the 

models perform better when VIX is included as an independent variable in the variance 

equation of the model. This finding confirms that the VIX contains incremental 

information over the GARCH specification. Hence, the inclusion of the VIX into the 

GARCH models is recommended to improve their performance. 

However, the results were less clear-cut when the models were performed under a 

heavier fat distribution function (t-student). Employing the t-student density function 
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did not appear meaningful incremental explanatory power over the baseline models. 

This implies that contrary to several studies, t-student did not have extra benefits that 

had not been captured by the GARCH models employing a normal distribution. In 

another word, although it intuitively seemed that the fatter tail functions are better able 

to capture the dynamics of volatility, the models with the inclusion of VIX 

encompassed the models with the heavier tail density functions. This is supported by 

Liu and Hung (2010) and Lin (2018). 

 

5.2. Recommendations 

 

Considering the findings of the research, the following points are recommended to 

improve the volatility modelling and forecasting process. 

• Incorporating asymmetry components into the models significantly improves both 

the in-sample and out-of-sample performance of volatility models. The heavily 

parameterized non-linear models as many studies confirm are better able to capture 

different dimensions of volatility. For stock markets, it is highly unlikely that 

negative and positive shocks have the same effect on variance so employing the 

asymmetric GARCH is recommended for the FTSE 100 volatility estimation and 

forecasting.  

• Incorporating the “Implied Volatility Index” of the FTSE 100 into the variance 

equation of the GARCH can significantly improve the performance of the GARCH 

models. This is also supported by previous studies and the logic behind it is that the 

VIX is a forward-looking volatility index and carries extra information content over 

the GARCH specification. 

• Although it is well established that the unconditional distribution of asset returns 

fluctuations has heavy tails, based on the findings of this research the inclusion of 

the VIX is more important than error distribution specification and employing the 

fatter tailed density of t-student did not show improvement over the models 

employing a normal distribution and containing the VIX.  

• Among the selected models, employing the E-GARCH is recommended since it 

outperformed the other two models both in estimation and forecasting the volatility 

of the UK stock market over 2000-2020. A good volatility model must be able to 

capture and reflect commonly held stylised facts about conditional volatility, 
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meaning unique characteristics of stock returns volatility such as leptokurtic 

distribution of returns, volatility clustering, asymmetric volatility, and mean-

reverting volatility (Hussain et al. 2019). The exponential-GARCH which allows 

for the inclusion of asymmetric variables, better fitted the so-called stylised facts of 

the UK’s FTSE 100 over 2000-2020 and consistently outperformed the other 

models. 

 

Before using the findings of this research, the limitations of the work should be 

considered by the users of the research. 

 

5.3. Limitations 

 

One drawback of the GARCH models is that the empirical results of studies are 

dependent on the sampling frequency (Engle and Patton 2007; Francq and Zakoian 

2019). This research has used weekly time series and using a different frequency could 

have resulted in different findings. Andersen and Bollerslev (1998) recommend that 

intraday high-frequency returns could better reflect the dynamics of stock market 

volatility. Using the high-frequency data (e.g., 5-minute data) was beyond the scope 

of this work. 

Although this research has tried to appropriately fit the models into the UK market’s 

data, special care should be taken in generalizing the results of this research into 

different datasets, different markets, and different economic conditions. Because a key 

challenge in GARCH modelling is finding the common characteristics in the stock 

market that fits the model (Bhowmik and Wang 2020). 

Another limitation is that the way the sample data is split into in-sample and out-

of-sample is relatively arbitrary. Different periods could have resulted in different 

findings. Moreover, this research has done single-period forecasting using one-week-

ahead horizons. Multi-period forecasting could have resulted in different performances 

for the selected models. 

Finally, the limitations of the information criteria used in the research for evaluation 

purposes should be considered. The AIC, SBC, and HQC are purely statistical 

measures and some authors argue that in some cases those criteria need modifications 

to be economically meaningful as well (Brooks and Burke 2003; Aliyev et al. 2020). 
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Considering the limitations of this research, there is an extended horizon for future 

research. 

 

5.4. Scope for further research 

 

• Utilising multi-horizon forecasting instead of one-step-ahead forecasting 

• Using volatility models which allow for volatility breaks, such as the Markov–

switching models of conditional heteroscedasticity (see e.g., Lange and 

Rahbek (2009)). 

• Examining different sectoral indices of the UK stock market. That will give 

additional insight into the volatility spill-over from one market or sector to 

another one. 

• The study can be extended more to model and compare the volatility of 

different developed and developing countries. 

• Using the Superior predictive ability test (SPA) of Hansen for evaluation 

purposes. 
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Appendix B. Tests for the Common Properties of the Time series 

 

Appendix B1. Estimation Sub-period, 2000-2007 

 

 

Weekly Log-Returns of the FTSE 100 over 2000-2007 

 

 
 

 

 

Histogram and Descriptive Statistics of the FTSE 100 over 2000-2007 
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Series: FTSE_100_LOG_RETURNS

Sample 1/12/2000 9/12/2007

Observations 398

Mean      -3.90e-05

Median   0.000856

Maximum  0.059010

Minimum -0.045117

Std. Dev.   0.010063

Skewness   0.155873

Kurtosis   9.138188

Jarque-Bera  626.4277

Probability  0.000000 
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Correlogram of the Returns of the FTSE 100 over 2000-2007 

 

 

 
 

 

 

Stationarity Test (ADF Test) for the Returns of the FTSE 100 over 2000-2007 

 

 
 

 

Date: 08/11/21   Time: 10:38
Sample: 1/12/2000 9/12/2007
Included observations: 398

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 -0.155 -0.155 9.6744 0.002
2 -0.013 -0.038 9.7422 0.008
3 0.077 0.071 12.122 0.007
4 -0.130 -0.110 18.931 0.001
5 -0.011 -0.046 18.976 0.002
6 0.090 0.076 22.302 0.001
7 -0.095 -0.058 26.008 0.001
8 -0.019 -0.054 26.158 0.001
9 0.031 0.003 26.555 0.002

10 -0.019 0.014 26.705 0.003
11 0.103 0.096 31.048 0.001
12 -0.022 -0.014 31.239 0.002

Null Hypothesis: FTSE_100_LOG_RETURNS has a unit root
Exogenous: Constant
Lag Length: 0 (Automatic - based on SIC, maxlag=16)

t-Statistic   Prob.*

Augmented Dickey-Fuller test statistic -23.24241  0.0000
Test critical values: 1% level -3.446608

5% level -2.868601
10% level -2.570597

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(FTSE_100_LOG_RETURNS)
Method: Least Squares
Date: 08/11/21   Time: 10:40
Sample (adjusted): 1/19/2000 9/12/2007
Included observations: 397 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.  

FTSE_100_LOG_RETURNS(-1) -1.155347 0.049709 -23.24241 0.0000
C -4.57E-05 0.000500 -0.091305 0.9273

R-squared 0.577635     Mean dependent var 6.69E-06
Adjusted R-squared 0.576566     S.D. dependent var 0.015315
S.E. of regression 0.009966     Akaike info criterion -6.374350
Sum squared resid 0.039228     Schwarz criterion -6.354279
Log likelihood 1267.308     Hannan-Quinn criter. -6.366399
F-statistic 540.2097     Durbin-Watson stat 2.010619
Prob(F-statistic) 0.000000
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Squared Returns of the FTSE 100 over 2000-2007 

 

 

 

 
 

 

 

 

Correlogram of the Squared Returns of the FTSE 100 over 2000-2007 

 

 

 
 

 

 

 

 

 

 

.0000

.0004

.0008

.0012

.0016

.0020

.0024

.0028

.0032

.0036

00 01 02 03 04 05 06 07

Date: 08/11/21   Time: 10:50
Sample: 1/12/2000 9/12/2007
Included observations: 398

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.361 0.361 52.222 0.000
2 0.097 -0.039 55.980 0.000
3 0.074 0.059 58.164 0.000
4 0.120 0.089 64.002 0.000
5 0.104 0.034 68.383 0.000
6 0.178 0.145 81.206 0.000
7 0.200 0.099 97.500 0.000
8 0.147 0.038 106.27 0.000
9 0.072 -0.006 108.37 0.000

10 0.076 0.029 110.76 0.000
11 0.120 0.061 116.72 0.000
12 0.073 -0.030 118.92 0.000
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Heteroskedasticity Test (ARCH Effect) over 2000-2007 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Heteroskedasticity Test: ARCH

F-statistic 58.89360     Prob. F(1,395) 0.0000
Obs*R-squared 51.51154     Prob. Chi-Square(1) 0.0000

Test Equation:
Dependent Variable: RESID^2
Method: Least Squares
Date: 08/11/21   Time: 11:00
Sample (adjusted): 1/19/2000 9/12/2007
Included observations: 397 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.  

C 6.48E-05 1.43E-05 4.515232 0.0000
RESID^2(-1) 0.360204 0.046937 7.674216 0.0000

R-squared 0.129752     Mean dependent var 0.000101
Adjusted R-squared 0.127549     S.D. dependent var 0.000289
S.E. of regression 0.000270     Akaike info criterion -13.59304
Sum squared resid 2.87E-05     Schwarz criterion -13.57297
Log likelihood 2700.218     Hannan-Quinn criter. -13.58509
F-statistic 58.89360     Durbin-Watson stat 1.972269
Prob(F-statistic) 0.000000
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Appendix B2. Forecasting Sub-period, 2007-2020 

 

 

Weekly Log-Returns of the FTSE 100 over 2007-2020 

 

 

 

 

 

Histogram and Descriptive Statistics of the FTSE 100 over 2000-2007 
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Series: FTSE_100_LOG_RETURNS

Sample 9/19/2007 12/30/2020

Observations 687

Mean       2.45e-05

Median   0.000581

Maximum  0.049062

Minimum -0.064383

Std. Dev.   0.010957

Skewness  -0.877193

Kurtosis   8.205143

Jarque-Bera  863.6559

Probability  0.000000 
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Correlogram of the Returns of the FTSE 100 over 2007-2020 

 

 

 

Stationarity Test (ADF Test) for the Returns of the FTSE 100 over 2007-2020 

 

 

 

 

Date: 08/29/21   Time: 10:16
Sample: 9/19/2007 12/30/2020
Included observations: 687

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 -0.022 -0.022 0.3362 0.562
2 -0.041 -0.042 1.5087 0.470
3 -0.028 -0.030 2.0576 0.561
4 -0.011 -0.014 2.1434 0.709
5 0.068 0.065 5.3710 0.372
6 -0.079 -0.078 9.6996 0.138
7 -0.075 -0.074 13.573 0.059
8 0.075 0.070 17.450 0.026
9 -0.015 -0.021 17.616 0.040

10 -0.067 -0.075 20.726 0.023
11 -0.080 -0.074 25.238 0.008
12 -0.013 -0.017 25.363 0.013

Null Hypothesis: FTSE_100_LOG_RETURNS has a unit root
Exogenous: Constant
Lag Length: 0 (Automatic - based on SIC, maxlag=12)

t-Statistic   Prob.*

Augmented Dickey-Fuller test statistic -26.75250  0.0000
Test critical values: 1% level -3.439654

5% level -2.865536
10% level -2.568955

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(FTSE_100_LOG_RETURNS)
Method: Least Squares
Date: 08/29/21   Time: 10:19
Sample (adjusted): 9/26/2007 12/30/2020
Included observations: 686 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.  

FTSE_100_LOG_RETURNS(-1) -1.022077 0.038205 -26.75250 0.0000
C 9.73E-06 0.000419 0.023250 0.9815

R-squared 0.511323     Mean dependent var -9.43E-06
Adjusted R-squared 0.510608     S.D. dependent var 0.015671
S.E. of regression 0.010963     Akaike info criterion -6.185725
Sum squared resid 0.082204     Schwarz criterion -6.172515
Log likelihood 2123.704     Hannan-Quinn criter. -6.180614
F-statistic 715.6962     Durbin-Watson stat 2.001223
Prob(F-statistic) 0.000000
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Heteroskedasticity Test (ARCH Effect) over 2000-2007 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Heteroskedasticity Test: ARCH

F-statistic 213.5641     Prob. F(1,684) 0.0000
Obs*R-squared 163.2251     Prob. Chi-Square(1) 0.0000

Test Equation:
Dependent Variable: RESID^2
Method: Least Squares
Date: 08/29/21   Time: 10:45
Sample (adjusted): 9/26/2007 12/30/2020
Included observations: 686 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.  

C 6.13E-05 1.15E-05 5.347455 0.0000
RESID^2(-1) 0.487825 0.033381 14.61383 0.0000

R-squared 0.237937     Mean dependent var 0.000120
Adjusted R-squared 0.236823     S.D. dependent var 0.000322
S.E. of regression 0.000282     Akaike info criterion -13.50992
Sum squared resid 5.42E-05     Schwarz criterion -13.49671
Log likelihood 4635.901     Hannan-Quinn criter. -13.50481
F-statistic 213.5641     Durbin-Watson stat 1.999615
Prob(F-statistic) 0.000000
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Appendix B3. Normal Market Sub-period, 2013-2018 

 

 

Weekly Log-Returns of FTSE 100 over 2013-2018 

 

 

 

 

 

 

Histogram and Descriptive Statistics of the FTSE 100 over 2013-2018 
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Series: FTSE

Sample 1/09/2013 12/19/2018

Observations 309

Mean       0.000162

Median   0.000284

Maximum  0.026581

Minimum -0.029771

Std. Dev.   0.008012

Skewness  -0.092126

Kurtosis   4.198192

Jarque-Bera  18.92128

Probability  0.000078 
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Correlogram of the Returns of the FTSE 100 over 2013-2018 

 

 
 

 

 

Stationarity Test (ADF Test) for the Returns of the FTSE 100 over 2013-2018 

 

 
 

 

Date: 08/29/21   Time: 10:55
Sample: 1/09/2013 12/19/2018
Included observations: 309

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 -0.071 -0.071 1.5856 0.208
2 -0.079 -0.084 3.5330 0.171
3 -0.058 -0.071 4.6035 0.203
4 -0.007 -0.024 4.6172 0.329
5 0.008 -0.006 4.6351 0.462
6 -0.110 -0.119 8.4570 0.206
7 -0.062 -0.085 9.6675 0.208
8 0.072 0.040 11.334 0.183
9 -0.022 -0.043 11.491 0.244

10 0.012 0.001 11.535 0.317
11 0.076 0.079 13.408 0.268
12 0.021 0.021 13.553 0.330

Null Hypothesis: FTSE has a unit root
Exogenous: Constant
Lag Length: 0 (Automatic - based on SIC, maxlag=15)

t-Statistic   Prob.*

Augmented Dickey-Fuller test statistic -18.77656  0.0000
Test critical values: 1% level -3.451421

5% level -2.870712
10% level -2.571728

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(FTSE)
Method: Least Squares
Date: 08/29/21   Time: 10:56
Sample (adjusted): 1/16/2013 12/19/2018
Included observations: 308 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.  

FTSE(-1) -1.071483 0.057065 -18.77656 0.0000
C 0.000160 0.000457 0.349813 0.7267

R-squared 0.535349     Mean dependent var -4.02E-05
Adjusted R-squared 0.533831     S.D. dependent var 0.011735
S.E. of regression 0.008012     Akaike info criterion -6.809192
Sum squared resid 0.019645     Schwarz criterion -6.784970
Log likelihood 1050.616     Hannan-Quinn criter. -6.799507
F-statistic 352.5594     Durbin-Watson stat 2.009413
Prob(F-statistic) 0.000000
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Heteroskedasticity Test (ARCH Effect) over 2013-2018 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Heteroskedasticity Test: ARCH

F-statistic 7.184271     Prob. F(1,306) 0.0078
Obs*R-squared 7.065347     Prob. Chi-Square(1) 0.0079

Test Equation:
Dependent Variable: RESID^2
Method: Least Squares
Date: 08/29/21   Time: 10:58
Sample (adjusted): 1/16/2013 12/19/2018
Included observations: 308 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.  

C 5.44E-05 7.42E-06 7.337523 0.0000
RESID^2(-1) 0.151430 0.056496 2.680349 0.0078

R-squared 0.022939     Mean dependent var 6.41E-05
Adjusted R-squared 0.019746     S.D. dependent var 0.000115
S.E. of regression 0.000114     Akaike info criterion -15.32079
Sum squared resid 3.95E-06     Schwarz criterion -15.29656
Log likelihood 2361.401     Hannan-Quinn criter. -15.31110
F-statistic 7.184271     Durbin-Watson stat 2.051401
Prob(F-statistic) 0.007753
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Appendix C. Estimation 
 

The Results from the GARCH over the Estimation Sub-period 

 

 

The Results from the GJR-GARCH over the Estimation Sub-period 
  

 

Dependent Variable: FTSE_100_LOG_RETURNS
Method: ML ARCH - Normal distribution (Marquardt / EViews legacy)
Date: 08/11/21   Time: 11:12
Sample: 1/12/2000 9/12/2007
Included observations: 398
Convergence achieved after 21 iterations
Presample variance: backcast (parameter = 0.7)
GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*GARCH(-1)

Variable Coefficient Std. Error z-Statistic Prob.  

C 0.000457 0.000422 1.082197 0.2792

Variance Equation

C 6.18E-06 1.98E-06 3.122579 0.0018
RESID(-1)^2 0.227741 0.049176 4.631160 0.0000
GARCH(-1) 0.723181 0.047431 15.24709 0.0000

R-squared -0.002433     Mean dependent var -3.90E-05
Adjusted R-squared -0.002433     S.D. dependent var 0.010063
S.E. of regression 0.010075     Akaike info criterion -6.651221
Sum squared resid 0.040296     Schwarz criterion -6.611156
Log likelihood 1327.593     Hannan-Quinn criter. -6.635352
Durbin-Watson stat 2.304883

Dependent Variable: FTSE_100_LOG_RETURNS
Method: ML ARCH - Normal distribution (Marquardt / EViews legacy)
Date: 08/11/21   Time: 11:50
Sample: 1/12/2000 9/12/2007
Included observations: 398
Convergence achieved after 17 iterations
Presample variance: backcast (parameter = 0.7)
GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*RESID(-1)^2*(RESID(-1)<0) 
        + C(5)*GARCH(-1)

Variable Coefficient Std. Error z-Statistic Prob.  

C -0.000130 0.000411 -0.317020 0.7512

Variance Equation

C 1.34E-05 2.42E-06 5.536240 0.0000
RESID(-1)^2 -0.111158 0.024860 -4.471322 0.0000

RESID(-1)^2*(RESID(-1)<0) 0.601829 0.121697 4.945291 0.0000
GARCH(-1) 0.654312 0.059053 11.07999 0.0000

R-squared -0.000082     Mean dependent var -3.90E-05
Adjusted R-squared -0.000082     S.D. dependent var 0.010063
S.E. of regression 0.010063     Akaike info criterion -6.738213
Sum squared resid 0.040201     Schwarz criterion -6.688132
Log likelihood 1345.904     Hannan-Quinn criter. -6.718376
Durbin-Watson stat 2.310300
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The Results from the E-GARCH over the Estimation Sub-period 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dependent Variable: FTSE_100_LOG_RETURNS
Method: ML ARCH - Normal distribution (Marquardt / EViews legacy)
Date: 08/11/21   Time: 11:54
Sample: 1/12/2000 9/12/2007
Included observations: 398
Convergence achieved after 32 iterations
Presample variance: backcast (parameter = 0.7)
LOG(GARCH) = C(2) + C(3)*ABS(RESID(-1)/@SQRT(GARCH(-1))) +
        C(4)*RESID(-1)/@SQRT(GARCH(-1)) + C(5)*LOG(GARCH(-1))

Variable Coefficient Std. Error z-Statistic Prob.  

C -0.000200 0.000419 -0.477183 0.6332

Variance Equation

C(2) -1.093658 0.206262 -5.302276 0.0000
C(3) 0.096899 0.055630 1.741836 0.0815
C(4) -0.281342 0.042789 -6.575169 0.0000
C(5) 0.893694 0.020965 42.62817 0.0000

R-squared -0.000257     Mean dependent var -3.90E-05
Adjusted R-squared -0.000257     S.D. dependent var 0.010063
S.E. of regression 0.010064     Akaike info criterion -6.744299
Sum squared resid 0.040208     Schwarz criterion -6.694218
Log likelihood 1347.116     Hannan-Quinn criter. -6.724463
Durbin-Watson stat 2.309897
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Appendix D. Forecasting 

 

Appendix D1. Forecasting using the GARCH Model 

 

The One-Week-Ahead Forecast of the GARCH 

 

 

The Difference between the Realised and Predicted Volatility using E-GARCH 
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The Regression of Realised against the Predicted Volatility using E-GARCH 

 

 

 
 

 

 

Appendix D2. Forecasting using the GJR-GARCH Model 

 

The One-Week-Ahead Forecast of the GJR-GARCH 

 

 

Dependent Variable: VOLATILITY
Method: Least Squares
Date: 08/11/21   Time: 17:24
Sample: 9/19/2007 12/30/2020
Included observations: 687

Variable Coefficient Std. Error t-Statistic Prob.  

C 1.81E-05 1.42E-05 1.274503 0.2029
FORECAST 0.810166 0.069423 11.67001 0.0000

R-squared 0.165844     Mean dependent var 0.000120
Adjusted R-squared 0.164626     S.D. dependent var 0.000322
S.E. of regression 0.000294     Akaike info criterion -13.42099
Sum squared resid 5.93E-05     Schwarz criterion -13.40779
Log likelihood 4612.109     Hannan-Quinn criter. -13.41588
F-statistic 136.1892     Durbin-Watson stat 1.479443
Prob(F-statistic) 0.000000
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Root Mean Squared Error 0.010950
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The Difference between the Realised and Predicted Volatility using E-GARCH 

 

 
 

 

 

 

 

The Regression of Realised against the Predicted Volatility using E-GARCH 
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Dependent Variable: VOLATILITY
Method: Least Squares
Date: 08/11/21   Time: 17:43
Sample: 9/19/2007 12/30/2020
Included observations: 687

Variable Coefficient Std. Error t-Statistic Prob.  

C 2.52E-05 1.32E-05 1.916366 0.0557
FORECAST 0.778143 0.059393 13.10156 0.0000

R-squared 0.200374     Mean dependent var 0.000120
Adjusted R-squared 0.199207     S.D. dependent var 0.000322
S.E. of regression 0.000288     Akaike info criterion -13.46327
Sum squared resid 5.69E-05     Schwarz criterion -13.45007
Log likelihood 4626.632     Hannan-Quinn criter. -13.45816
F-statistic 171.6509     Durbin-Watson stat 1.470928
Prob(F-statistic) 0.000000
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Appendix E. Normal Market Sub-Period, 2013-2018 

 

Estimation using the GARCH Model 

 

 
 

 

Estimation using the GJR-GARCH Model 

 

 

Dependent Variable: FTSE
Method: ML ARCH - Normal distribution (Marquardt / EViews legacy)
Date: 08/11/21   Time: 19:22
Sample: 1/09/2013 12/19/2018
Included observations: 309
Convergence achieved after 11 iterations
Presample variance: backcast (parameter = 0.7)
GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*GARCH(-1)

Variable Coefficient Std. Error z-Statistic Prob.  

C 0.000235 0.000408 0.576924 0.5640

Variance Equation

C 3.18E-06 1.53E-06 2.074756 0.0380
RESID(-1)^2 0.117265 0.040817 2.872968 0.0041
GARCH(-1) 0.837418 0.050969 16.42984 0.0000

R-squared -0.000083     Mean dependent var 0.000162
Adjusted R-squared -0.000083     S.D. dependent var 0.008012
S.E. of regression 0.008012     Akaike info criterion -6.901247
Sum squared resid 0.019771     Schwarz criterion -6.852919
Log likelihood 1070.243     Hannan-Quinn criter. -6.881926
Durbin-Watson stat 2.138368

Dependent Variable: FTSE
Method: ML ARCH - Normal distribution (Marquardt / EViews legacy)
Date: 08/11/21   Time: 19:19
Sample: 1/09/2013 12/19/2018
Included observations: 309
Convergence achieved after 18 iterations
Presample variance: backcast (parameter = 0.7)
GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*RESID(-1)^2*(RESID(-1)<0) 
        + C(5)*GARCH(-1)

Variable Coefficient Std. Error z-Statistic Prob.  

C -0.000168 0.000451 -0.371724 0.7101

Variance Equation

C 4.49E-06 1.68E-06 2.676982 0.0074
RESID(-1)^2 -0.028278 0.034729 -0.814242 0.4155

RESID(-1)^2*(RESID(-1)<0) 0.269042 0.086099 3.124791 0.0018
GARCH(-1) 0.829552 0.050362 16.47191 0.0000

R-squared -0.001703     Mean dependent var 0.000162
Adjusted R-squared -0.001703     S.D. dependent var 0.008012
S.E. of regression 0.008019     Akaike info criterion -6.935556
Sum squared resid 0.019803     Schwarz criterion -6.875146
Log likelihood 1076.543     Hannan-Quinn criter. -6.911403
Durbin-Watson stat 2.134909
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Estimation using the E-GARCH Model 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dependent Variable: FTSE
Method: ML ARCH - Normal distribution (Marquardt / EViews legacy)
Date: 08/11/21   Time: 19:33
Sample: 1/09/2013 12/19/2018
Included observations: 309
Convergence achieved after 20 iterations
Presample variance: backcast (parameter = 0.7)
LOG(GARCH) = C(2) + C(3)*ABS(RESID(-1)/@SQRT(GARCH(-1))) +
        C(4)*RESID(-1)/@SQRT(GARCH(-1)) + C(5)*LOG(GARCH(-1))

Variable Coefficient Std. Error z-Statistic Prob.  

C -0.000257 0.000447 -0.575230 0.5651

Variance Equation

C(2) -0.852115 0.292082 -2.917385 0.0035
C(3) 0.149732 0.054135 2.765882 0.0057
C(4) -0.192867 0.050917 -3.787883 0.0002
C(5) 0.924281 0.028654 32.25667 0.0000

R-squared -0.002755     Mean dependent var 0.000162
Adjusted R-squared -0.002755     S.D. dependent var 0.008012
S.E. of regression 0.008023     Akaike info criterion -6.945835
Sum squared resid 0.019824     Schwarz criterion -6.885425
Log likelihood 1078.132     Hannan-Quinn criter. -6.921683
Durbin-Watson stat 2.132669
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Appendix F. Inclusion of the VIX to the Models 

 

 

Weekly Values of the VIX on the FTSE 100 over 2013-2018 

 

 

 
 

 

 

 

 

 

Descriptive Statistics for the VIX Variable 
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Sample 1/09/2013 12/19/2018

Observations 309

Mean       0.000487

Median   0.000311

Maximum  0.204347

Minimum -0.186934

Std. Dev.   0.061826

Skewness   0.167671

Kurtosis   3.673520

Jarque-Bera  7.288339

Probability  0.026143 
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Stationarity Test for the VIX Variable 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Null Hypothesis: VIX has a unit root
Exogenous: Constant
Lag Length: 1 (Automatic - based on SIC, maxlag=15)

t-Statistic   Prob.*

Augmented Dickey-Fuller test statistic -15.81873  0.0000
Test critical values: 1% level -3.451491

5% level -2.870743
10% level -2.571744

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(VIX)
Method: Least Squares
Date: 08/29/21   Time: 11:00
Sample (adjusted): 1/23/2013 12/19/2018
Included observations: 307 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.  

VIX(-1) -1.363917 0.086222 -15.81873 0.0000
D(VIX(-1)) 0.163433 0.056366 2.899507 0.0040

C 0.001072 0.003438 0.311825 0.7554

R-squared 0.598623     Mean dependent var 0.000379
Adjusted R-squared 0.595982     S.D. dependent var 0.094770
S.E. of regression 0.060238     Akaike info criterion -2.771291
Sum squared resid 1.103113     Schwarz criterion -2.734872
Log likelihood 428.3931     Hannan-Quinn criter. -2.756727
F-statistic 226.6961     Durbin-Watson stat 2.028366
Prob(F-statistic) 0.000000
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Inclusion of the VIX to the GARCH Model 

 

 

 

Inclusion of the VIX to the GJR-GARCH Model 

 

 

Dependent Variable: FTSE
Method: ML ARCH - Normal distribution (Marquardt / EViews legacy)
Date: 08/29/21   Time: 23:22
Sample: 1/09/2013 12/19/2018
Included observations: 309
Convergence achieved after 16 iterations
Presample variance: backcast (parameter = 0.7)
GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*GARCH(-1) + C(5)*VIX

Variable Coefficient Std. Error z-Statistic Prob.  

C 0.000833 0.000384 2.170889 0.0299

Variance Equation

C 5.60E-06 2.27E-06 2.467898 0.0136
RESID(-1)^2 0.109264 0.048852 2.236631 0.0253
GARCH(-1) 0.775630 0.074853 10.36206 0.0000

VIX 0.000225 3.33E-05 6.751110 0.0000

R-squared -0.007025     Mean dependent var 0.000162
Adjusted R-squared -0.007025     S.D. dependent var 0.008012
S.E. of regression 0.008040     Akaike info criterion -7.024695
Sum squared resid 0.019909     Schwarz criterion -6.964285
Log likelihood 1090.315     Hannan-Quinn criter. -7.000543
Durbin-Watson stat 2.123626

Dependent Variable: FTSE
Method: ML ARCH - Normal distribution (Marquardt / EViews legacy)
Date: 08/31/21   Time: 10:26
Sample: 1/09/2013 12/19/2018
Included observations: 309
Convergence achieved after 8 iterations
Presample variance: backcast (parameter = 0.7)
GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*RESID(-1)^2*(RESID(-1)<0) 
        + C(5)*GARCH(-1) + C(6)*VIX

Variable Coefficient Std. Error z-Statistic Prob.  

C 0.001102 0.000432 2.548702 0.0108

Variance Equation

C 1.04E-05 3.49E-06 2.982452 0.0029
RESID(-1)^2 0.084232 0.074619 1.128830 0.2590

RESID(-1)^2*(RESID(-1)<0) 0.128899 0.109288 1.179448 0.2382
GARCH(-1) 0.635735 0.092335 6.885123 0.0000

VIX 0.000246 1.63E-05 15.06289 0.0000

R-squared -0.013804     Mean dependent var 0.000162
Adjusted R-squared -0.013804     S.D. dependent var 0.008012
S.E. of regression 0.008067     Akaike info criterion -7.027737
Sum squared resid 0.020043     Schwarz criterion -6.955245
Log likelihood 1091.785     Hannan-Quinn criter. -6.998754
Durbin-Watson stat 2.109426
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Inclusion of the VIX to the E-GARCH Model 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dependent Variable: FTSE
Method: ML ARCH - Normal distribution (Marquardt / EViews legacy)
Date: 08/31/21   Time: 09:48
Sample: 1/09/2013 12/19/2018
Included observations: 309
Convergence achieved after 68 iterations
Presample variance: backcast (parameter = 0.7)
LOG(GARCH) = C(2) + C(3)*ABS(RESID(-1)/@SQRT(GARCH(-1))) +
        C(4)*RESID(-1)/@SQRT(GARCH(-1)) + C(5)*LOG(GARCH(-1)) +
        C(6)*VIX

Variable Coefficient Std. Error z-Statistic Prob.  

C 0.001161 0.000408 2.844414 0.0044

Variance Equation

C(2) -0.259178 0.104806 -2.472939 0.0134
C(3) 0.085892 0.051158 1.678958 0.0932
C(4) -0.040330 0.053008 -0.760831 0.4468
C(5) 0.980901 0.009888 99.20195 0.0000
C(6) 7.541693 1.198108 6.294670 0.0000

R-squared -0.015590     Mean dependent var 0.000162
Adjusted R-squared -0.015590     S.D. dependent var 0.008012
S.E. of regression 0.008074     Akaike info criterion -7.083543
Sum squared resid 0.020078     Schwarz criterion -7.011051
Log likelihood 1100.407     Hannan-Quinn criter. -7.054560
Durbin-Watson stat 2.105716
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Appendix G. Estimation under t-student Distribution Function 

 

Estimation of GARCH under t-student Distribution Function 

 

 

 
 

Estimation of GJR-GARCH under t-student Function 

 

 
 

Dependent Variable: FTSE
Method: ML ARCH - Student's t distribution (Marquardt / EViews
        legacy)
Date: 08/31/21   Time: 09:24
Sample: 1/09/2013 12/19/2018
Included observations: 309
Convergence achieved after 44 iterations
Presample variance: backcast (parameter = 0.7)
GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*GARCH(-1)

Variable Coefficient Std. Error z-Statistic Prob.  

C 0.000337 0.000390 0.863627 0.3878

Variance Equation

C 3.33E-06 2.12E-06 1.566661 0.1172
RESID(-1)^2 0.127934 0.057693 2.217501 0.0266
GARCH(-1) 0.827486 0.068972 11.99737 0.0000

T-DIST. DOF 8.207039 5.076723 1.616602 0.1060

R-squared -0.000474     Mean dependent var 0.000162
Adjusted R-squared -0.000474     S.D. dependent var 0.008012
S.E. of regression 0.008014     Akaike info criterion -6.912111
Sum squared resid 0.019779     Schwarz criterion -6.851701
Log likelihood 1072.921     Hannan-Quinn criter. -6.887959
Durbin-Watson stat 2.137531

Dependent Variable: FTSE
Method: ML ARCH - Student's t distribution (Marquardt / EViews
        legacy)
Date: 08/31/21   Time: 09:35
Sample: 1/09/2013 12/19/2018
Included observations: 309
Convergence achieved after 57 iterations
Presample variance: backcast (parameter = 0.7)
GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*RESID(-1)^2*(RESID(-1)<0) 
        + C(5)*GARCH(-1)

Variable Coefficient Std. Error z-Statistic Prob.  

C 7.97E-05 0.000413 0.193083 0.8469

Variance Equation

C 1.06E-05 5.07E-06 2.085753 0.0370
RESID(-1)^2 -0.062899 0.058428 -1.076509 0.2817

RESID(-1)^2*(RESID(-1)<0) 0.443059 0.180099 2.460088 0.0139
GARCH(-1) 0.684772 0.118828 5.762730 0.0000

T-DIST. DOF 8.349478 4.922459 1.696201 0.0898

R-squared -0.000107     Mean dependent var 0.000162
Adjusted R-squared -0.000107     S.D. dependent var 0.008012
S.E. of regression 0.008012     Akaike info criterion -6.942766
Sum squared resid 0.019772     Schwarz criterion -6.870274
Log likelihood 1078.657     Hannan-Quinn criter. -6.913784
Durbin-Watson stat 2.138316
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Estimation of E-GARCH under t-student Distribution Function 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dependent Variable: FTSE
Method: ML ARCH - Student's t distribution (Marquardt / EViews
        legacy)
Date: 08/29/21   Time: 18:26
Sample: 1/09/2013 12/19/2018
Included observations: 309
Convergence achieved after 147 iterations
Presample variance: backcast (parameter = 0.7)
LOG(GARCH) = C(2) + C(3)*ABS(RESID(-1)/@SQRT(GARCH(-1))) +
        C(4)*RESID(-1)/@SQRT(GARCH(-1)) + C(5)*LOG(GARCH(-1))

Variable Coefficient Std. Error z-Statistic Prob.  

C -6.39E-05 0.000419 -0.152367 0.8789

Variance Equation

C(2) -1.024361 0.417090 -2.455971 0.0141
C(3) 0.172547 0.080322 2.148189 0.0317
C(4) -0.220715 0.069036 -3.197098 0.0014
C(5) 0.909076 0.040617 22.38179 0.0000

T-DIST. DOF 10.80971 8.183106 1.320979 0.1865

R-squared -0.000801     Mean dependent var 0.000162
Adjusted R-squared -0.000801     S.D. dependent var 0.008012
S.E. of regression 0.008015     Akaike info criterion -6.949476
Sum squared resid 0.019786     Schwarz criterion -6.876984
Log likelihood 1079.694     Hannan-Quinn criter. -6.920494
Durbin-Watson stat 2.136834
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Appendix H. Estimation Jointly with VIX and t-student 

 

GARCH Estimation Jointly with the VIX and t-student 

 

 

 

GJR-GARCH Estimation Jointly with the VIX and t-student 

 

 

Dependent Variable: FTSE
Method: ML ARCH - Student's t distribution (Marquardt / EViews
        legacy)
Date: 08/29/21   Time: 23:19
Sample: 1/09/2013 12/19/2018
Included observations: 309
Convergence achieved after 42 iterations
Presample variance: backcast (parameter = 0.7)
GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*GARCH(-1) + C(5)*VIX

Variable Coefficient Std. Error z-Statistic Prob.  

C 0.001044 0.000402 2.594307 0.0095

Variance Equation

C 8.21E-06 1.37E-06 5.985448 0.0000
RESID(-1)^2 0.150575 0.048408 3.110541 0.0019
GARCH(-1) 0.696883 0.038922 17.90471 0.0000

VIX 0.000248 4.75E-05 5.226450 0.0000

T-DIST. DOF 20.00002 26.36500 0.758582 0.4481

R-squared -0.012138     Mean dependent var 0.000162
Adjusted R-squared -0.012138     S.D. dependent var 0.008012
S.E. of regression 0.008060     Akaike info criterion -7.006323
Sum squared resid 0.020010     Schwarz criterion -6.933831
Log likelihood 1088.477     Hannan-Quinn criter. -6.977341
Durbin-Watson stat 2.112899

Dependent Variable: FTSE
Method: ML ARCH - Student's t distribution (Marquardt / EViews
        legacy)
Date: 08/29/21   Time: 23:25
Sample: 1/09/2013 12/19/2018
Included observations: 309
Convergence achieved after 8 iterations
Presample variance: backcast (parameter = 0.7)
GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*RESID(-1)^2*(RESID(-1)<0) 
        + C(5)*GARCH(-1) + C(6)*VIX

Variable Coefficient Std. Error z-Statistic Prob.  

C 0.000992 0.000392 2.530591 0.0114

Variance Equation

C 9.78E-06 3.93E-06 2.489162 0.0128
RESID(-1)^2 0.067025 0.074626 0.898145 0.3691

RESID(-1)^2*(RESID(-1)<0) 0.159936 0.116718 1.370281 0.1706
GARCH(-1) 0.637625 0.113687 5.608598 0.0000

VIX 0.000237 1.03E-05 23.04768 0.0000

T-DIST. DOF 20.00002 24.27620 0.823853 0.4100

R-squared -0.010748     Mean dependent var 0.000162
Adjusted R-squared -0.010748     S.D. dependent var 0.008012
S.E. of regression 0.008055     Akaike info criterion -7.025845
Sum squared resid 0.019982     Schwarz criterion -6.941271
Log likelihood 1092.493     Hannan-Quinn criter. -6.992032
Durbin-Watson stat 2.115803



 

85 
 

E-GARCH Estimation Jointly with VIX and t-student 

 

 

Dependent Variable: FTSE
Method: ML ARCH - Student's t distribution (Marquardt / EViews
        legacy)
Date: 08/31/21   Time: 09:28
Sample: 1/09/2013 12/19/2018
Included observations: 309
Convergence achieved after 49 iterations
Presample variance: backcast (parameter = 0.7)
LOG(GARCH) = C(2) + C(3)*ABS(RESID(-1)/@SQRT(GARCH(-1))) +
        C(4)*RESID(-1)/@SQRT(GARCH(-1)) + C(5)*LOG(GARCH(-1)) +
        C(6)*VIX

Variable Coefficient Std. Error z-Statistic Prob.  

C 0.001159 0.000408 2.843648 0.0045

Variance Equation

C(2) -0.260756 0.110396 -2.361999 0.0182
C(3) 0.086211 0.052573 1.639852 0.1010
C(4) -0.040229 0.053696 -0.749199 0.4537
C(5) 0.980764 0.010321 95.02591 0.0000
C(6) 7.551732 1.241039 6.085007 0.0000

T-DIST. DOF 340.7380 9524.731 0.035774 0.9715

R-squared -0.015534     Mean dependent var 0.000162
Adjusted R-squared -0.015534     S.D. dependent var 0.008012
S.E. of regression 0.008074     Akaike info criterion -7.076770
Sum squared resid 0.020077     Schwarz criterion -6.992196
Log likelihood 1100.361     Hannan-Quinn criter. -7.042957
Durbin-Watson stat 2.105833


