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Abstract

Merton in 1969 considered how an investor must decide how much to
consume and how to allocate their wealth between risky and sure assets in
order to maximise their expected lifetime utility. This classic problem is
sometimes called Merton’s Problem.

In this project, we attempt to replace the stochastic differential equation
for the risky asset, which Merton assumed to have constant volatility, with
one that has volatility of a stochastic nature. Then we will attempt to solve
this modified Merton problem for two cases:

1. Finite Time Horizon (Chapter 2).
2. Infinite Time Horizon (Chapter 3).
We will apply numerical methods to solve Merton’s optimisation prob-

lem and analyse how each parameter affects the portfolio. (Chapter 4),
(Chapter 5).
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Chapter 1

Introduction

Merton in the paper [1] examined the portfolio optimisation problem for an
individual whose income is generated by capital gains on assets satisfying
geometric Brownian motion. He later in 1971 extended the idea to more
general utility functions, as well as considering income generated from non-
capital gain sources [2]. Merton solved this optimal portfolio problem in
a market with a sure asset and a risky asset, the price of which follows a
geometric Brownian motion with dynamics:

dP, = aP,dt + bP,dW, (1.1)

where a, b are constants.

However, analysis carried out by Scott [4] has shown that the volatility
is in reality not constant. Having this in mind, in order for us to get a
more accurate representation of the dynamics of the asset, we must take into
account a randomly changing volatility.

Furthermore!, a well-known fact noticed first by Black [3] is the nega-
tive correlation between volatility and current stock prices. Known as the
Leverage Elffect, this observation strengthens the link between volatility and
current stock prices. A working paper by Stephen Figlewski & Xiaozu Wang
[10] provides many references to this phenomenon.

Volatility Persistence is another well-documented fact, where volatility
is observed to have a memory. This reinforces the link between volatility and
past prices. A paper by Mathieu Rosenbaum [11] provides further references.
The aim of this project is to extend the Merton problem so it takes into

!The topics we discuss here are an expansion of the ideas discussed in [6].



account randomly changing volatility. We shall choose a model that captures
at least some of the above characteristics, unlike equation (1.1).

As mentioned by Davis [12], stochastic volatility models divide into two
broad classes: ‘single-factor’ and ‘multi-factor’ models. In the former, the
original Brownian motion W; continues to be the only source of randomness,
whereas in the latter further Brownian motions or other random elements
are introduced. In this paper, we will empathise mainly on ‘single-factor’
models. We refer the reader to [12], which discusses ‘multi-factor’ models in
detail. In the next section, we will briefly discuss the simplest case of the
‘single-factor’ models, the so-called Level Dependent Volatility model.

1.1 Level Dependent Volatility

In the level dependent volatility model, the price process takes the form:

where ¢ is a Lipschitz continuous function.

Several well-known forms are the CEV model [14] and the implied tree
models by Derman & Kani [15], Dupire [16] or Rubinstein [17]. However
analysis done by Dumas, Fleming & Whaley [18] led them to conclude that
the deterministic volatility framework could be generalised, suggesting that
volatility may be related to past changes in the underlying. Hobson & Rogers
proposed a new class of models [5], which was inspired by the GARCH frame-
work. The unique aspect of this model is that it defines the volatility in terms
of the historical performance of the stock price. The distinct advantage this
model has over the traditional stochastic volatility models is that they do not
introduce any new source of randomness, thus maintaining market complete-
ness. Moreover, as we are looking at the past performance of the stocks we
are able to incorporate economic trends easily without the need to introduce
other variables. In the next section, we will briefly look at the dynamics
behind the Hobson & Rogers model.



1.2 Hobson & Rogers Model

Let us briefly review the Hobson & Rogers model [5]. Firstly, denote the
discounted log price process Z; by:

Zy = log(Pe™™), (1.3)
where P; is the stock price at time .

Definition 1.2.1. The first order offset function S, is defined as:
St = / )\G_Au(Zt — Zt_u)du, (14)
0

where X is a positive constant which expresses the discounting rate of past
information. >

Moreover, given W, is a standard Brownian motion, we assume Z; sat-
isfies the SDE:

where o(.) and pu(.) are Lipschitz functions, with o(.) being strictly positive.

Lemma 1.2.1. (7, S;) forms a Markov process. The offset function S; sat-
isfies the SDE:

For the proof of this Lemma, we will refer the reader to the Hobson &
Rogers paper [5]. Equations (1.5) and (1.6) give us:

dS, = [u(S,) — ASdt + o(S,)dW, (1.7)

In my project, I propose to solve Merton’s problem with the asset price
following the Hobson & Rogers model. This will be accomplished by using the
method of dynamic programming. As stated by Benth [19], a major drawback
with the dynamic programming approach is that the allocation strategies
must depend on the volatility. As volatility is not directly observable in
the market, it is practically impossible to follow portfolio rules if volatility
levels are explicitly taken into account. However, in our context the Hobson
& Rogers model defines the volatility in terms of stock prices, which the
investor can observe. This means our model is partially observable, thus the
above drawback is effectively made redundant.

2The paper by Hobson & Rogers actually introduces a more general model with m
offsets. This is achieved by defining St(m) by St(m) = fooo e M(Zy — Zy_)™du. In this
paper for simplicity, we will only consider 1 offset.
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1.3 Stochastic Control

Let us first briefly introduce the concept of optimal control. Optimal control
theory is a generalisation of the calculus of variations optimisation method for
deriving control policies. Classical calculus of variations developed from the
brachistochrone problem posed by the Swiss mathematician Johann Bernoulli.
An in-depth review of this topic can be found in [20]. However, classi-
cal calculus of variations cannot be directly applied to trajectories that are
stochastic processes. The reason for this is that stochastic trajectories will be
non-smooth, violating admissibility conditions [21]. Instead, we turn to the
method of dynamic programming in continuous time, often called Stochas-
tic Control. Unlike classical control theory, a stochastic control takes into
account uncertainties, such as random noises and disturbances, which make
it ideal for tackling Merton’s problem. This has been discussed in detail by
Duffie [7] and to some extent by Musiela & Zariphopoulou [9]. A key notion
in stochastic control theory is the Hamilton Jacobi Bellman equation. In the
next two sections I will outline how to derive the Hamilton Jacobi Bellman
equation for both finite and infinite horizons. The following sections are
based largely on the work of [7] & [23].

1.3.1 Finite Horizon

In this section, we will derive the stochastic version of the Hamilton Jacobi
Bellman equation for the finite horizon stochastic optimisation problem. We
begin by formulating the problem as Merton [1]:

V(t, h) = sup Et{ /t L e ru(e)dr + U(HT)} p>0  (18)

Ct

SUCh that dHt = ](t, Ht: Ct)dt + k(t, Hta Ct)th

t denotes the initial time and A denotes the corresponding state.

Hrp is an Fr measurable nonnegative random variable describing the
wealth at time 7.

E; denotes the expectation given the information available upto time ¢.

V' (t, h) is the value function which measures the value of the state at
time ¢, with a state variable h.



e ¢, is our control variable, it is an adapted nonnegative consumption
. T
rate process with [ ¢ dr < oo almost surely.

e The utility of intermediate consumption u : RT x [t,T] — R is con-
tinuous and V7 € [¢t,T], u : R" — R is increasing and concave, with
u(0) = 0.

e The wutility of terminal wealth U : R™ — R is increasing and concave,
with U(0) = 0.

Now following a route similar to Dorfman [22], we can approximate V' by
keeping ¢ constant in the interval [t, ¢ + dt|, then afterwards assuming max-
imising behaviour:

V(t,h) = sup Et{eptu(ct)dt + V(t + dt, HHdt)} (1.9)

The previous equation is also known as The Bellman principle of optimality
[13]. An application of Itd’s lemma yields:

A% oV 10%V
dV; = Sdt + dH, + 5 2 d(H),
8V oV 10%V oV
815 ah](t Ht,Ct) 2 ah2 k(t7Ht7Ct> :|dt+ [8}; (t Ht,Ct):| th

(1.10)
Remembering that dV; = V(¢ + dt, Hyrar) — V(t, Hy) we get:
ov oV . 10%V

V(t+dt,Hyq) = V(¢ Hy) + [ + ahj(t, t,Ct) + 5 9he

ot k(t, Ht,Ct)2:| dt

+ |:avk'(t Ht, Ct):| th

oh
(1.11)
Hence equation (1.9) becomes:
V(t, h) = sup Et{ept'LI,(Ct>dt + V(t, Ht) + |:aav + aa‘}/;j(t, Ht, Ct)
10*V ov
+§Wk<t,Ht7Ct) :|dt+ |:%k(t Htact):| th} (112)
Since E;[W;] = 0, we can simplify the previous equation to the Hamilton
Jacobt Bellman equation:
av oV 10*V
pt _ _ 2 =
sgp{e u(c) + 5 + 8h]( t,h,c)+ 5902 k(t, h,c) } 0 (1.13)



1.3.2 Infinite Horizon

In this section we will derive the stochastic version of the Hamilton Jacobi
Bellman equation for the infinite horizon with standard discounting. We can
simplify equation (1.13) by eliminating explicit time dependence. We have:

V(t,h) = sup Et{ /t N e_pTu(cT)dT} p>0  (L14)

such that dH; = j(t, Hy, ¢;)dt + k(t, Hy, c;)dW,;

If we set z = 7 — t then we have dz = dr, hence the above takes the form:

V(t,h) = supE, [/ e_p(z+t)u(cz+t)dz}
0

Ct

=e " sup]E[/oo e P*u(c,)dz | Hy = h}
= e*”th(h) 0 (1.15)
where Y(h) is as follows?:
Y (h) =supE [/000 e P*u(c,)dz | Hy = h] (1.16)
which means 5V
S5 = —re Y (h). (1.17)

This essentially demonstrates the fact that in the infinite horizon setting time
does not come into the optimal solution. Dropping all t dependence equation
(1.13) becomes:

Y 10%Y
suclp{u(c) —pY'(h) + %j(o, h,c) + §Wk;(0, h, c)2} =0 (1.18)
This is known as the Hamilton Jacobi Bellman equation for the infinite time
case.

3Y is a function of all state variables. In our case we only have one state variable h.
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Chapter 2

Finite Horizon

The finite horizon case assumes that the investor has a finite lifespan. In other
words the investor was born at time 0 and dies at time 7. Now given that
Hy is the terminal wealth, from [2] the investor must decide how to invest his
wealth in risky and sure assets in order to maximise expected utility of wealth
at the final time T. The first part of the calculation to derive the dynamics for
the wealth process will follow the technique of Fouque,Papanicolaou & Sircar
[8]. The derivation of the Hamilton Jacobi Bellman equation will follow the
method outlined in Section 1.3.1. In this chapter for simplicity, we will not
consider consumption.

2.1 Merton’s Problem

Let us find the solution of Merton’s Problem when the asset price follows the
dynamics introduced by Hobson & Rogers. Our initial aim is to derive an
expression for dP;, we first observe:

7, =log(Pe™™) & P, = %ttt (2.1)

An application of [to’s lemma gives us:
dP, = rPdt + P,dZ; + %Bd(Z)t (2.2)
This in conjunction with equation (1.5) gives:
4P, = Pl + p(S)) + %U(St)Q]dt + Plo(S)ldW; (2.3)

11



Now an investor has wealth H; at time ¢t made up of «; stocks and 3; bonds.
Ht = Otht + ﬂtert (24)

Given that the investor trades in a self financing manner, we have that the
change in the value of the position over the small time interval [t,¢ 4 dt] is
given by:

dH; = aydP; + Bid(e™) (2.5)
Denoting the fraction of wealth in stocks and bonds by ¢; and (1 — ¢;) at
time t respectively, we have:

o = So;ft g = L) _eﬁt) e (2.6)
Thus equation (2.5) becomes:
dH, = r(1 — ¢, H,dt + gO“T:[tdpt (2.7)
Now substituting (2.3) into (2.7) we get:
dH, = [rHy + @ Hyp(S;) + %gptha(St)Z]dt + @ Hyo (Sy)dW; (2.8)

where Hy = h and Sy = s.

Remark 2.1.1. As P, does not appear explicitly we have a closed equation.
This automatically implies that Hy is a Markov process if the control ¢, is
chosen through a Markov control policy. That is if p; is a function of (t, Hy)

/8.

The objective of the investor is to choose ¢; such that they maximise the
expected utility at some terminal time 7'. This is also clear from equation
(1.8), as there is no consumption, the utility of intermediate consumption
term in this equation vanishes. This leaves us with the value function:

V(t,h,s) =supEg|U(Hr)] (2.9)
Pt
We restrict ourselves to the case of the Power Utility function.
1
Ulx) = —a”, v€(0,1) (2.10)
v

where 7 is known as the risk-aversion constant.! Hence the value function

becomes:

H]
Hy=h,S) = s] = sup E"* {—T} (2.11)
f‘y

Pt

H
V(t,h,s) =supE {TT

Pt

'We only consider positive v in our project for simplicity.
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Theorem 2.1.1. Given the transformation V (t, h,s) = %iﬂm(t, s), the op-
timal value of ¢ which satisfies equation (2.11) is:
. 1L Jus) 1 10m

- S 9.12
1—7 0(s)2+2+mas (2.12)

Proof. We follow the strategy outlined in Section 1.3.1 to derive the Hamilton
Jacobi Bellman equation. An application of It6’s lemma gives us:

ov oV ov 0*V
—dH H,
dV, = 5 dt—l—ahd t—i—a dS; + 88hd< S)y
10°V 10°V
+§Wd<H> 2ﬁd<s>t (2.13)
This in conjunction with (1.7) and (2.8) gives:
ov ov 1 ov
dVi = —-di+ %[rh + ohu(s) + égoha( s)?]dt + %@ha( s)dW,
0?V
+§{[,u(s) — As|dt + o(s)dW,} + 9 ahg&ho( s)2dt
10%V S22 10°V .,
+§W h ( ) dt + §g0(8) dt (2.14)
Simplifying?,
ov. oV 1
V(t + dt, Ht+dt> St—i—dt) = V(t, Hta St) + |:E + % [Th + SOh,u(S) + §@h0(3>2}
ov O*V s, 1OV .,
—l—%[ p(s) — As| + R who(s) +§ah2g0 ho(s)
10°V V ov
5 ) }d”[a_ 7(5) + 55 7B dWe
(2.15)
Taking expectation at time t = 0, it follows that:
ov. oV
ER |V (t + dt, Hyyar, SHdt)} =V(t,h,s)+ {E + a7 [rh + @hu(s)
1 01 OV 0*V 5
- — - h
+ ngha(s) |+ s [(s) — As| + 250n ¢ o(s)
102V 5.5 o 10°V
+ 392 ? heo(s)” + Ewa(s) dt (2.16)

2Note that d‘/t = V(t + dt, Ht+dt7 St+dt) — V(t, Ht, St)

13



In our case, the Bellman principle of optimality given in equation (1.9) can
be expressed as:

sup{—V(t, h,s) +EM* |V (t 4+ dt, Hy q, St+dt)} } =0 (2.17)
Pt

at optimum ¢,. Hence it follows that our Hamilton Jacobi Bellman equation
is:

ov. oV 1 0 OV
sgp{a + o [rh + @hu(s) + §g0ha(s) ]+ g[u(s) — As]
0*V o 10°V 5, o, 10V )
—l—asahgoho(s) + 392 % heo(s)” + 5@0(8) } =0 (2.18)

To simplify our PDE further we can apply some transformations that elim-

inate the 2% 22V 4nq ‘227‘; terms.? The reason is to reduce the PDE to a

oh dsdh
state in which it consists of derivatives only in one variable. Consider the
transformation: .
V(t,h,s) = —h"mf(t,s) (2.19)
Y

This means equation (2.18) becomes:

am om 19*m , 1 5
e + mry + g[,u(s) — As] + 3 5s o(s)” + sgp{gp[u(s)mv + éma(s) v
om 9 1, 2|
+ 006 + gy = Dl =0
(2.20)
with boundary condition:
m(T,s) = 1. (2.21)

By taking derivatives of equation (2.20) with respect to ¢ and equating it to
0, we get the supremum:

1 S 1 10m
R pe) (1 10m

2.22
1—7lo(s)? 2 mOs (222)

This is the supremum because in equation (2.18) we are maximising a quadratic
in ¢, now as v € (0,1) the quadratic coefficient is negative. Thus this is the
optimal ¢. [

2 . . . 2 2 .
30ne could choose a transformation to eliminate %—‘s/, g@(’;;r and %3‘2/ instead of what

was eliminated above. However, this would be unnecessarily tedious.
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Corollary 2.1.1. Given the transformation m(t,s) = n(t,s)'™, the solu-
tion of the Hamilton Jacobi Bellman equation (2.20) can be written as the
expectation:

n(t, s) :Et’s{ ST de@“] (2.23)

where

I'(s) = ), (2.24)

+ u(S;) — )\St} dt + o (Sy)dW; (2.25)
with gt = s.

Proof. Insert ¢* into (2.20) and get:
om [(2u(8)+0<8)2)27+7”y}m+ {7(2u(8)+0(8)2) T ls)— AS] om

ot 8(1 —v)o(s)? 2(1—7) 0s
vo(s)2 1 (om\® 1 9*m
*ﬂ?r$5(5§>+5“”(%2—0
(2.26)

In view of the paper by Musiela & Zariphopoulou [9], we can linearise equa-
tion (2.26) by applying the following transformation:

m(t,s) = n(t,s)7 (2.27)

Hence equation (2.26) becomes:

on [@uls) ooy ] [42u(s) +o(5)?)
o | 8- )0 (s)? *1—J *[ 20— )
+u(s) — /\S]Z—Z—Fla()%zo (2.28)

Applying the Feynman-Kac formula to equation (2.26) we obtain the required
expectation. O

All that remains is to numerically approximate this expectation. In
Chapter 4, we will use Monte Carlo methods to do this.

15



Chapter 3

Infinite Horizon

Let us consider the infinite horizon case. In this scenario there is no upper
bound 7T on time. This is very useful for investors that have long-term
investment goals, such as a pension fund or an insurance company. In such
cases, an infinite horizon is more appropriate as a natural fixed finite horizon
does not exist. One can view an infinite horizon as an approximation to
a ‘long’ horizon. This observation forms the basis for this chapter. We
will first look at a finite horizon problem with consumption. Then through
implementing the so-called transversality condition [1],[7] & [32], we can take
T — oo.

3.1 Merton’s Problem

Before we begin, let us refer back to equation (1.8). As there is no concept
of terminal time for the infinite horizon case, the utility of terminal wealth is
nonexistent. Thus, we need to introduce consumption. Our wealth process
(2.8) now becomes:

1
dHt = [THt + goth,u(St) + E@thO'<St>2 — Ct]dt + (,DthO'(St)th (31)

where Hy = h, Sp = s and ¢; denotes consumption. Now the objective for
the investor is to choose a ¢; and a consumption ¢; such that they maximise
the expected utility. Again, from equation (1.8) our value function can be

defined as:

V(t, h,s) = sup E, { /t ' e_pTu(cT)dT} p>0 (3.2)

Pt,Ct
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We restrict ourselves to the case of the Power Utility function.
1
u(er) = ~l, v e 1) (3.3)
Y

where as before, v is the risk-aversion constant.

Let us remove explicit time dependence. Let z = 7 — t then dz = dr,
hence following Section 1.3.2 we have:

V(t,h,s) =e Y (s, h) (3.4)
where Y (s, h) is:
Y(s,h) = suth’S{/ epzu(cz)dz} (3.5)
P 0

Now taking into account that our wealth process (3.1) now includes con-
sumption, equation (2.18) modifies into:

ov. oV 1 ov
sup{ute) + 5+ S+ huts) + 5o (s = ]+ Su(s) = as
el 2 VOV e 1PV )
Tason o) g hiols) +§W"< 2 }O

(3.6)

Using the relation between V and Y as indicated in equation (3.4), substitut-
ing for the derivatives of V' into equation (3.6), we get our Hamilton Jacobi
Bellman equation:

)4 1 aYy
sup{ () —pY + — o [rh + @hu(s) + —gpha(s)2 —c] + a—[u(s) — As]
®,c S
02y 2 1Y a0 1OV L)
Tason 17 T g el g gEe) } =0

(3.7)

Rather than the boundary condition (2.21) we add the technical transversal-
ity condition [32].
T
lim E[e~ /e #*Y (s,h)|F] =0 (3.8)

T—o00

Theorem 3.1.1. Given the transformation Y (h,s) = h¥m(s), the optimal
value of ¢ and ¢ which satisfy equation (3.7) are:

17



o= (Z)T 9)

*:_;L_{u@>%_1+_gg@}

(3.10)

1—~|o(s)?2 2 m s

Proof. By differentiating equation (3.7) with respect to ¢, it is straightfor-
ward to see that:

1
aY  Ou oY\
e = 3.11
on Tae T CT (ah) (3.11)
Taking second derivatives of equation (3.7) with respect to ¢, we get:
0?u 5
which is negative for all v € (0,1). Hence, the optimal value of ¢ is obtained
when: 1
oY\
= — 3.13
= (%) (3.13)
This proves first part of the theorem. Inserting ¢* into equation (3.7) we get:
oY 1—]/0Y\ ™= oY 1%
—pY + —rh — — —A —— 2
pY + o +[ 5 }(8}1) —|—88[u(3) S]+2882U(8)

oY 1 . Y 2 LY s )
sup{ T [ohn(s) + geho(s)] + oo (o + 3 T hlo(s | =

Now we must apply a transformation to reduce the PDE into a state that
consists of only single variable derivatives. Consider the transformation:

Y (h,s) = h"m(s) (3.15)
This means equation (3.14) becomes:

1_7 T 1y T— - — 2
—mp+mr7+(T>7 m- T + (u(s) — )\5]+28 50(s)

+ﬂm{¢M@Ww+%md®%+%g<ﬂ@ﬂ+—w%w—1wwwf}=0

)

18



Finally the supremum over ¢ is attained at:

L [a) 1, Lom
11— |o(s)? T s (8:17)

As mentioned in Chapter 2, this is the supremum because in equation (3.16)
we are maximising a quadratic in ¢, now as vy € (0, 1) the quadratic coefficient
is negative. Thus this is the optimal . O]

Notice that the optimal ¢* is identical to that of the finite horizon. This
is what we expect, as our consumption level ¢ is independent of the fraction
of wealth in the risky asset .

Corollary 3.1.1. Given the transformation m(s) = n(s)'™, the solution of
the Hamilton Jacobi Bellman equation (3.7) can be written as the expectation:

n(t,s) = B MT JE W SOd =15 gpy 4 i V(SO (3.18)
where oy
U(s) = (25%#2(18)—4;;23()5))27 + m; P (3.19)
and S satisfies:
ds, = [ V2 “;1) )( ) + u(Sy) —Agt] dt + o (S,)dW, (3.20)

with S; = s and n(T, s) = 1.

Proof. Now we insert ¢* into (3.16) and get:

N L I T
() oG (5
(3.21)

Like the previous chapter, we can linearise equation (3.21) by applying the
following transformation:
m(s) =n(s)'77 (3.22)

19



Hence, equation (3.21) becomes:

2u(s) +a(s)*)*y v —p 7(2u(s) +a(s)?) R
e Rl e S RO R
1 282n 1
+§0(3) @—l—’y 7=

(3.23)

Using the boundary condition n(7',s) = 1, we apply the Feynman-Kac for-
mula to equation (2.26) and obtain the required expectation. O

Corollary 3.1.2. Equation (3.18) can be written as the expectation:

n(s) = BV { / oI W~ g (3.24)

t

Proof. Consider equation (3.18), taking 7" — oo and applying the transver-
sality condition proves the result. O

20



Chapter 4

Numerical Analysis Finite
Horizon

In this chapter, using Microsoft Excel we aim to solve numerically the finite
horizon PDE derived earlier. We have already applied the Feynman-Kac
formula and reduced the PDE into an expectation; all that remains is to run
Monte Carlo simulations to solve the PDE. We will compare the parameters
in the Hobson & Rogers model with that of classical short rate models. We
now need to choose suitable functions for o(s) and p(s) bearing in mind that
they have to be Lipschitz functions, the former being positive as well.

Let us consider basing the parameters on the Dothan model [24] & [25],
which has dynamics: . . .

where A and ¢ are positive constants.! The reason we choose this model is
because the S, is lognormally distributed, implying that S, is always strictly
positive for each ¢ [25]. This further highlights the models admissibility in
our framework, as £S5, will also be strictly positive. Thus taking:

o(s) =&s AN, (4.2)

for some large constant N;.2 We satisfy both the strict positivity and Lips-
chitz conditions on o(s). This choice also captures the phenomenon that if
the current price significantly differs from the past average, then the volatility

!The Dothan model actually allows A € R, however from the Hobson & Rogers model,
A is a positive constant that expresses the discounting rate of past information.

2The use of the technical condition Nj is reminiscent of Hobson & Rogers [5]. They
use this to ensure that the function is bounded.
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is high. Let us now find a function for u(s), consider:

ls) = AL = 7)s — 365 A Ny (4.3)

for some small negative constant N,. This function is Lipschitz as it is
bounded. Thus with these choices of o(s) and p(s) our equations (2.12) and

(2.25) become:

12X 10n
(B Al 4.4
7 2+£25+n88 (44)

A\ 2.)\2
F(S)Z( 2525)7+17“_77

with S, = s. Moreover in equation (4.4), we used the transformation (2.27).
We have simplified our SDE (2.25) to the form required for the Dothan model.
In order for us to simulate this, we will need to be able to generate Brownian
motion. We can do this by using the method of Linear Congruential Gen-
erators to simulate uniform random variables. Then using the Box-Muller
algorithm we can obtain standard normal random variables. Now recall from
Brigo & Mercurio [25] that the dynamics of equation (4.1) can be integrated
as follows:

(4.5)

5 — G0N0 rE W W) (4.6)
where ¢t < T. Furthermore Wy — W, ~ N(0,T — t).

Referring to Glasserman [29], we see that in order to simulate the stan-
dard Brownian motions (W, --,W; ) at a fixed set of points 0 < ¢; <
-+« < tp; we will need to consider the set (Z,--- ,Z,) of independent stan-
dard normal random variables. We set ¢y = 0 and W;, = 0 and generate as
follows:

Wt Wt. = ti+1 — t/L'ZiJrl 1= O, R 1 (47)

i1 i
In our case, we will divide time into equally spaced discrete intervals each

with width Wloo' In other words if we discretise time into n steps, then:
1

+ 1000 ! " (4:8)

Thus by taking gto = 1, we can simulate our offset function as follows:

~ 5 L aleyp & g
Stiv1 = Stiewoo( 28+ i 7 (4.9)

In the next two sections, I will introduce the methods we will use to generate
uniform and standard normal random variables.
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4.1 Linear Congruential Generators

We require a method of creating uniform random values in the set (0,1). In
this section, we introduce the simplest class of generators of random numbers,
the Linear Congruential Generators. This generation method essentially pro-
duces a series of integers xg, x1, T2, -+ by the following calculation:

Tpy1 = (ax, + b)mod(c) a,b,c e N* (4.10)

All that remains is to choose an initial value, sometimes called the seed xg.

Pseudo random numbers produced by a Linear Congruential Genera-
tor behave somewhat like uniform random values in the set (0,---,c — 1),
but there are problems [27]. By the pigeonhole principle®, the sequence
Zo, X1, To, -+ must repeat itself over and over. As soon as the first period
ends, we are able to predict the second period, negating the point of a ran-
dom number generator. One way to solve this is if we take ¢ sufficiently
large. The period is at most ¢ and in the majority of cases less than that.
To ensure we get a maximised period, we must choose our constants a, b, ¢
so that the following conditions are met:

1. b and c are relatively prime.
2. a — 1 is divisible by all prime factors of c.

3. a — 1 is a multiple of 4 if ¢ is a multiple of 4.

Park & Miller [28] suggested the ‘Minimal Standard’ parameters: a = 16807,
b= 0 and ¢ = 2147483647. We will also use these parameters in our analysis.

4.2 Box-Muller Algorithm

In the previous section, we examined an algorithm that generates uniform
random values. Here, we discuss the Box-Muller algorithm [26], which gen-
erates normal random values. This straightforward method begins with gen-
erating two uniform random variables Uy, Uy ~ U(0,1). Then we consider

3The pigeonhole principle frequently arises in computer science. The basic idea is that
if we have a pigeonholes and b pigeons and a < b where a,b € N. Then if we put each
pigeon in a hole there must be at least one pigeonhole with two pigeons.
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the random variables:

X1 = +/—2log Uy cos 2wUs (4.11)
Xo = \/—2log U sin 27wU; (4.12)

(X1, X2) will be a pair of independent normal random variables with mean
zero and unit variance.

4.3 Numerical Integration

Now recall that our aim in this chapter is to numerically approximate the
solution to the right hand side of equation (2.23). Having already established
a procedure for deriving S, it is straightforward given equation (4.5) to
extend this method so we can generate I'(s). However just being able to
simulate I'(s) is not enough, equation (2.23) tells us that we need to evaluate
the integral:

/t .ti“ I(8,)d¢ (4.13)

We will have to evaluate this numerically. The idea behind our method
would be to divide the area under the graph into tiny rectangular strips as
shown in Figure (4.1). Using elementary geometry, we will then individually
work out the area of each strip and then sum them. This procedure is
often called Riemann sums, in particular we will adopt the method of Right
Riemann sums in our analysis, with a strip length of Wlom It is also worth
mentioning that due to the nowhere differentiability property of the sample
path for I'(S,), we will never be able to exactly work out this area. We
can only improve our approximations by dividing the area into thinner and
thinner strips. Finally taking exponentials, we can numerically estimate the
quantity:

e T (B0)de (4.14)

4.4 Numerical Differentiation

Observe that in equation (4.4), we have to work out the derivative g—’;. We
can see this will be difficult as s is simulated from a stochastic function. An
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Figure 4.1: A plot to demonstrate the idea of numerical integration. In this

example we took the strip width to be Wloo

analytic derivative will never exist for n(¢,s). We will take the approach by
Benth [31] to numerically solve this.

on(t, s) n(t,s +A) —n(t,s)

ds ilg}o (4.15)
We can numerically approximate this with:
on(t,s) _n(t,s+A)—n(ts) (4.16)

0s A

for small A.

4.5 Monte Carlo Simulations

What we need to do now in order to approximate the expectation defined

tit1 &
in equation (2.23) is to repeat the process of approximating eli TSI gy
1

many different time intervals, then averaging them. In other words each 1555
unit we progress in time we evaluate another area strip under I'(s), exponen-
tiate this and then average it with the previous value of the simulation. In
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5*(t, 5)

Time

Figure 4.2: A plot to demonstrate the evolution of ¢*(¢,s) over time and
offsets. We performed 25000 simulations.

our case we have simulated this 25000 times by incrementing time in steps

1
of 1006 from 0 to 25.

We have avoided using Microsoft Excel’s built in normal distribution
generator, as its performance is limited [30]. Instead, we opt for a Box-
Muller approach implemented on C++. I have provided the code in the
appendix (A.1). Our ultimate aim is to be able to evaluate equation (4.4)
and solve for ¢*. We will examine the evolution of ¢* as we vary time and
offset. Figure (4.2) shows the relationship of ¢* against time and offsets.
Figure (4.3) illustrates the evolution of ¢* over the offsets, while we keep
time fixed. We have used parameters A = 0.5, £ = 0.5, v = 0.5, r = 0.05,
N1 = 25 and N2 = —25.

Notice that ¢* must be less than 1 as it is the fraction of the wealth
in risky assets. We can see in both plots that indeed once we do enough
simulations it does indeed fall to a level below 1.

In Figure (4.3), we only plotted the first 10000 simulations due to system
limitations. Computer instability prevented us from plotting further points.
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Figure 4.3: A scatter plot to demonstrate the relationship of ¢*(s) and the
offsets, while we keep time fixed. We plotted the first 10000 simulations.
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As the points were very closely clustered together, it caused my computer
system to consume more memory to render the image. Nevertheless, we still
capture the fundamentals in both plots. We can clearly see that in Figure
(4.2), as time progresses ¢* gets smaller and smaller. In fact taking limits,
we get: |
fm o] =3 (4.17)
This is what we expected, as when we go further in time the offset
increases as well. The larger the offset value, the greater the difference in
the time between the observations of the stock price; thus more inaccurate
representations of stock dynamics. Generally the smaller the offset the more
accurately you can capture the movements in the market. Therefore, it is
only natural that the investor reduces their proportion of wealth in the risky
asset. In Figure (4.3), we fixed Sy = 1 and we froze the time interval to ¢t = 0
and T' = 1. We then generated 10000 values for the offset. As shown on
the diagram as the number of offsets increase the holdings in the risky assets
decrease. This further reiterates the above idea.

4.6 The Parameters

In this section, we discuss the parameters A\, ¢ and v and observe the effects
varying them has on ¢*(s).

4.6.1 The Risk Aversion Constant v

Lets observe the effects of changing the risk-aversion constant v. Remember
that our utility function is of the power utility type as defined in equation
(2.10).

4.6.2 Risk Attitude

There are three different attitudes an investor can have when it comes to
risk:

e Risk Prone.

e Risk Neutral.
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o Risk Averse.

The Risk Prone Investor

This mindset corresponds to when:

d
— 1. 4.1
de(x)>0<:>7> (4.18)

The Risk Neutral Investor

This mindset corresponds to when:

d

—U(z)=0&v=1. 4.19

LU =05y (119)
As a utility function of the power type requires v € (0, 1), we have that this
function is unsuitable to model the utility of a risk neutral or a risk prone
investor.

The Risk Averse Investor

This mindset corresponds to when:

d
— 1. 4.2
de(x)<0<:>7< (4.20)

In contrast to the previous two cases, this mindset is admissible in the
power utility. Generally as v gets small the investor becomes more and more
risk averse.

Now looking at equation (4.4), we notice that 7 is not explicitly present.
In fact the only place v is used is during the derivation of n(t,s) when we
worked out I'(s) (4.5). Even in I'(s), v plays a passive role. Once we actu-
ally average it out to derive n(t, s) any effect v had was further dampened.
Therefore the effect of varying v on ¢*(s) will be miniscule. In our case we
have plotted the relationship of ¢*(s) and v with the parameters ¢ = 0.5,
A = 0.001, » = 0.05, N; = 25, Ny = —25 and we fix time to the interval
[0, 1]. Clearly, Figure (4.4) shows that as the investor’s risk aversion constant
increases so does the proportion of their wealth in the risky asset. This was
expected, the investor is becoming more of a risk taker.
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Figure 4.4: A graph demonstrating the relationship of ¢*(s) and ~

4.6.3 The Volatility Parameter ¢

The standard deviation parameter ¢ is a positive constant associated with
the volatility of the process S;. Now we must remember that 0 < e < 1.
This means that we must truncate the graph so that this constraint holds.
In Figure (4.5) we have plotted the relationship of ¢*(s) and ¢ with the
parameters v = 0.5, A = 0.5, r = 0.05, N; = 25 and Ny = —25. The ¢*(s)
we have used here has been derived using 10000 simulations as we vary &, we
also fixed time as before.

This graph turned out to be exactly how we expected. As the volatility
increased, the market became more and more unpredictable. This graph
captures the natural reaction of the investor by decreasing his proportion in
the risky assets. We can see clearly that from equation (4.4):

lim[*] = oo (4.21)

This means that for some &, regardless of the other parameters p* > 1.
This contradicts our initial constraint on ¢*. Therefore, the only way to

satisfy the initial constraint is to restrict volatility. However, the problem

30



0o

08

07

06

=
— 05
"

04

03

0.2

0.1

Figure 4.5: A graph demonstrating the relationship of ¢*(s) and &

that lies here is that volatility is not observable, so we won’t be able to tell
whether the volatility of the market will allow admissible values of ¢*. We
will discuss this further and examine alternatives in Chapter 6.

4.6.4 The Discounting Rate of Past Information \

Now we will consider the effects of changing A, the discounting rate of past
information in the Hobson & Rogers model. We have shown in Figure (4.6)
the relationship of ¢*(s) and A with the parameters v = 0.5, £ = 0.51,
r = 0.05, Ny = 25 and Ny = —25. The ¢*(s) we have used here has been
derived using 10000 simulations as we vary A, we also fixed time as before.

This graph is exactly how we expected it to be. X in a sense depends on
the past stocks that modelled the volatility. Generally, the bigger the time
gap between the log prices of the stocks the more we will discount and the
larger A will be. The converse is also true. Therefore we will be able to model
the volatility more realistically the less we discount, simply because we will
be basing our volatility on recent stocks. Thus as Figure (4.6) shows, when
A is small the investor takes advantage of the realistic approximations of the
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volatility and increases their holdings of risky assets. Then as the more A
increases, the less realistic volatility becomes, the investor foresees greater

Figure 4.6: A graph demonstrating the relationship of ¢*(s) and A

risk and reduces his proportion of risky assets.
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Chapter 5

Numerical Analysis Infinite
Horizon

In this chapter, we aim to solve numerically the infinite horizon PDE derived
in Chapter 3. While this chapter essentially applies the same substantive
techniques of the previous chapter, it is worth examining separately as we
are optimising over consumption as well.

Like the previous chapter, we will again base our parameters on the
Dothan model. o(s) and p(s) will be defined as in equations (4.2) and (4.3).
With these choices equation (3.19) becomes:

(AN+Es)%y  ry—p
8¢? gt

U(s) = (5.1)

5.1 Monte Carlo Simulations

Using similar methods as the last chapter, I will numerically solve equation
(3.24). We have used parameters v = 0.5, £ = 0.5, A = 0.5, p = 0.05,r = 0.05,
N1 = 25 and N2 = —25.

Notice that Figure (5.1) is a replica of Figure (4.3). This was what we
expected because in Figure (4.3) we fixed time. This replicates Merton’s
observation [1], where:

: * %
lim [spﬁnitc horizon] = ©infinite horizon (52)
T—o00

As our plots involving ¢ are identical to the last chapter, I will only
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Figure 5.1: A scatter plot to demonstrate the relationship of ¢*(s) and the
offsets in the infinite time case.

34




03

025 +

02

£ 01s
Y

01

T T T T T T T T T
a 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of Simulations

Figure 5.2: A plot to demonstrate the evolution of ¢*(s)

focus on the optimal consumption in this chapter. As before, we will vary
each parameters and discuss how they affect ¢*. First of all we need to
simplify equation (3.9). Looking at equations (3.15) and (3.22) we can reduce
equation (3.9) to:

(5.3)

Thus taking h = 1, we can numerically approximate ¢*. We have plotted
this function in Figure (5.2). This graph describes the evolution of ¢* as we
progress through each simulation.

5.2 The Parameters

As in the previous chapter, we will discuss the parameters v, £ and A and
observe the effects varying them has on ¢*. The ¢* we have used here has
been derived using 10000 simulations.
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Figure 5.3: A plot to demonstrate the evolution of ¢*(s) as we vary 7.

5.2.1 The Risk Aversion Constant -y

In Figure (5.3), we demonstrate the relationship of ¢*(s) as we vary v. In
our case we have taken the parameters ¢ = 0.5, A = 0.5, » = 0.05, p = 0.05,
Nl - 25, N2 - —25

This plot is what we expected. Remember as v — 1 the more risks
the investor takes. As the risk aversion constant increases in our plot, con-
sumption rates fall. The investor who likes taking risks gets satisfaction from
accumulating wealth. Thus, this sort of investor keeps consumption to a min-
imum, in order to amass the most wealth. This is clearly visible in Figure
(5.3).

5.2.2 The Volatility Parameter ¢

In Figure (5.4), we demonstrate the relationship of ¢*(s) as we vary £&. We
have again taken the usual parameters: v = 0.5, A = 0.5, » = 0.05, p = 0.05,
Ny =25, Ny = —25.

We must remember that ¢*(s) is the optimal rate of consumption. When
we look at Figure (5.4), we can clearly see that as the volatility increases the
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Figure 5.5: A plot to demonstrate the evolution of ¢*(s) as we vary A.

rate of consumption initially increases too. However as soon as the volatility
reaches a certain level the consumption falls sharply. This is what we ex-
pected; the initial increase in consumption was due to the investor not being
aware at first of the approaching market conditions. At the time of the initial
increase, the volatility was not high, thus not a cause for concern. Once the
investor realises, we can see a sharp drop in consumption.

5.2.3 The Discounting Rate of Past Information )\

In Figure (5.5) we have plotted of ¢*(s) and A with the parameters: v = 0.5,
€ =0.50, r =0.05, N; = 25 and Ny = —25.

As discussed before we know that lambda is the rate of discounting of
past information. The lower the A, the more reliable the model as the dy-
namics are based on recent stock prices. In figure (5.5), we find that as A
increases the consumption rate decreases. This is because initially the in-
vestor felt more comfortable consuming when he had a more reliable outlook
on the market. However as A\ increased the outlook for the investor became
more unreliable, hence the investor reduced consumption.
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Chapter 6

Conclusion

In this paper, we solved Merton’s portfolio problem in a stochastic volatil-
ity environment. Previous work have been done on this topic, for example
Fouque, Papanicolaou & Sircar [8] and Benth, Karlsen & Reikvam [19] tack-
led the problem when the volatility was explicitly driven by the Ornstein-
Uhlenbeck process. However, this ‘multi-factor’ model had one major dis-
advantage over its ‘single-factor’ counterpart; it left the market incomplete.
Thus, we decided to abandon the ‘multi-factor’ approach and focus on ‘single-
factor’ models. After a basic review of the straightforward Level Dependent
Volatility ‘single-factor’ models; we deduced that there were more advantages
in choosing a model that defined volatility in terms of historical prices [18].
One such model was the complete stochastic volatility model of Hobson &
Rogers [5]. With this framework, we were able to capture the well-known
phenomena of Volatility Persistence and the Leverage Effect. This further
reinforced the relationship between volatility and stock prices, both past and
present.

Inspired by the work of Merton [1], Duffie, [7], Musiela & Zariphopoulou
[9] we reduced the Merton’s portfolio problem for both finite and infinite
horizon cases into expectations. We then compared the parameters o(s) and
p(s) to the Dothan model. We chose the Dothan framework as it was the
simplest model that did not violate the Lipschitz and positivity conditions
required in the Hobson & Rogers model. Using Monte Carlo techniques, we
approximated the expectations. In the finite horizon case we were able to
deduce the value of the optimal fraction of wealth invested in the risky asset
¢ as a function of time and offsets. The drawbacks of this approach first
emerged when we plotted the function against the individual parameters ~,
A and £. We must remember that ¢ < 1, meaning that we had to add further
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restrictions on our parameters. From a practitioners viewpoint this severely
limits application, especially the restriction on £. This will mean we need to
be aware of the volatility, which is not direct observable. Ideally we would
like to permit all possible choices of volatility by forcing & > 0. However,
this can never happen as the limits we took in equation (4.21) always means
that for some values of &, ¢ will always be above 1. Nevertheless, the most
preferable scenario would be to avoid all these conditions by simply resorting
to another model instead of using the Dothan framework. A suitable choice
would be the parameters Hobson & Rogers defined in [5].

os=vV1+es AN (6.1)

for some large constant N. v and € are parameters we will need to fit. A
suitable choice of drift u(s) will make the offset mean reverting; this property
will be inherited by o(s). Then instead of generating random variables, we
calibrate the parameters on historical data of actual stock prices. This should
avoid the problems we had with the parameters above. This option is left as
an idea for further research.

Let us for the moment only consider the 0 < ¢ < 1 part on the plots
of each parameter. In the relationship of ¢ and the risk aversion constant,
we see the value of v is proportional correlated to ¢. Again, makes sense,
as the risk nature of the investor will affect his position in the risky asset.
In the relationship of ¢ and A we noticed that there was a slight hump in
the plot. This made sense for smaller A\, an investor would usually find the
model more accurate than for a larger A\. This is because when you consider
a larger A means we discount more; which in turn implies that in our offset
we considered historical stock prices where one was taken after significant
period of time than the other. This meant the offset function had a sort
of dampening effect where many of the shocks in between were in a sense
smoothed out. This leads the investor to rebalance their portfolio, decreasing
their proportion of risky assets. This sounds eccentric, as in our case we only
considered one offset, but over multiple offsets we will be able to get more
accurate representations of the dynamics. This can be another suggestion for
further research. However, one must be aware that the optimality equations
involve a PDE, considering more offsets would modify the problem to solving
a higher dimension PDE, which could prove quite difficult to solve.

Finally, we considered the problem in the infinite time horizon setting.
In this scenario, we considered consumption and replaced the boundary con-
dition (2.21) with a so-called transversality condition. Reminiscent of Merton
[1] we ended up with the same ¢ as the finite horizon case. We tested the
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effects of the parameters on the optimal consumption ¢*. In the relation-
ship of ¢* and the risk aversion constant we clearly saw that as v increased
consumption decreased. This is one of the traits of a risk loving investor.
They will consume less in order to maximise wealth. In the relationship of
c¢* and the volatility parameter we clearly saw that as & was a hump shape,
indicating an all of a sudden realisation of market conditions by the investor.
This trait occurs frequently in practice. In the relationship of ¢* and the A
we clearly saw that the investor only liked to consume when he knew he was
likely to make back some wealth in the markets.
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Appendix A

Appendix

A.1 Monte Carlo Simulations, Normal.cpp

All C++ code have been tested on the Microsoft Visual C++ 2008 compiler
running on a Microsoft Windows Vista 64bit system. Performance may vary
from system to system. The C++ code for Linear Congruential Generators
is slightly based on the one provided by Scheinerman [27]. This code imple-
ments the methods of Linear Congruential Generators and the Box-Muller
Algorithm to generate sample paths for S;.

/**%

* A simple program to generate Standard Normal Random Variables
Kk /

#include <iostream>
#include <cmath>
#include <vector>
#include <fstream>

using namespace std;

//Define Linear Congruential Generator
int lcg(long int a, long int b, long int c) {
static int state = 1; //seed
state = (axstate+b) % c;
if (state<0)
return state+c;
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else
return state;

int main() {
char namel[5];
int Number_0f_Simulations = 100000;

ofstream out("Normal.txt");

const double PI = 3.1415926535897932; // Define Pi
vector<double> Uniform(100000) ;

//Park & Miller

long int a = 6807;

long int b = O;

long int c 2147483647 ;

// Generate Uniform Random Variables
for (int k=0; k<Number_0f_Simulations; k++) {
Uniform[k] = (lcg(a,b,c) /2147483647.);
+
for(int i=0; i<Number_0f_Simulations;i+=2){
//Define the Normal Random variables using Box Muller
out << sqrt(-2+log(Uniform[i]))*cos(2*PI*Uniform[i+1]) << endl;
out << sqrt(-2*log(Uniform[i]))*sin(2*PI*Uniform[i+1]) << endl;

Uniform.clear(); //Free up memory by erasing this vector
cout << "We are generating "<<Number_0f_Simulations

<<" Standard Normal Random Variables" << endl;
cout << "The result is being written to Normal.txt" << endl;
cout << "Hit any key+<RET> to finish" << endl;
cin >> name;

return O;

}

This program outputs to a text file, after which we load it up onto
Microsoft Excel and perform Monte Carlo Simulations to approximate the
expectation we obtained at the end of chapter 2 and 3.
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